Journal of the American Chemical Society
Communication
Soc. 2011, 133, 2836. (g) Zheng, B.; Wang, F.; Dong, S.; Huang, F.
Chem. Soc. Rev. 2012, 41, 1621. (h) Noujeim, N.; Zhu, K.; Vukotic, V.
N.; Loeb, S. J. Org. Lett. 2012, 14, 2484. (i) Jiang, W.; Nowosinski, K.;
Low, N. L.; Dzyuba, E. V.; Klautzsch, F.; Schafer, A.; Huuskonen, J.;
Rissanen, K.; Schalley, C. A. J. Am. Chem. Soc. 2012, 134, 1860.
(j) Joosten, A.; Trolez, Y.; Collin, J.-P.; Heitz, V.; Sauvage, J.-P. J. Am.
Chem. Soc. 2012, 134, 1802. (k) Zheng, X.; Wang, D.; Shuai, Z.; Zhang,
X. J. Phys. Chem. B 2012, 116, 823. (l) Ayme, J.-F.; Beves, J. E.; Leigh, D.
A.; McBurney, R. T.; Rissanen, K.; Schultz, D. J. Am. Chem. Soc. 2012,
134, 9488. (m) Yan, X.; Wang, F.; Zheng, B.; Huang, F. Chem. Soc. Rev.
2012, 41, 6042.
(6) (a) Yan, D.; Zhou, Y.; Hou, J. Science 2004, 303, 65. (b) Sun, Y.;
Yan, C.-G.; Yao, Y.; Han, Y.; Shen, M. Adv. Funct. Mater. 2008, 18, 3981.
(c) Guan, B.; Jiang, M.; Yang, X.; Liang, Q.; Chen, Y. Soft Matter 2008, 4,
1393. (d) Sun, Y.; Yao, Y.; Yan, C.-G.; Han, Y.; Shen, M. ACS Nano
2010, 4, 2129. (e) Liang, Q.; Chen, G.; Guan, B.; Jiang, M. J. Mater.
Chem. 2011, 21, 13262. (f) Zhu, L.; Lu, M.; Zhang, Q.; Qu, D.; Tian, H.
Macromolecules 2011, 44, 4092.
(7) (a) Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. A.; Nakamoto,
Y. J. Am. Chem. Soc. 2008, 130, 5022. (b) Cao, D.; Kou, Y.; Liang, J.;
Chen, Z.; Wang, L.; Meier, H. Angew. Chem., Int. Ed. 2009, 48, 9721.
(c) Zhang, Z.; Xia, B.; Han, C.; Yu, Y.; Huang, F. Org. Lett. 2010, 12,
2385. (d) Han, C.; Ma, F.; Zhang, Z.; Xia, B.; Yu, Y.; Huang, F. Org. Lett.
2010, 12, 4360. (e) Li, C.; Zhao, L.; Li, J.; Ding, X.; Chen, S.; Zhang, Q.;
Yu, Y.; Jia, X. Chem. Commun. 2010, 46, 9016. (f) Zhang, Z.; Yu, G.; Han,
C.; Liu, J.; Ding, X.; Yu, Y.; Huang, F. Org. Lett. 2011, 13, 4818.
(g) Zhang, Z.; Luo, Y.; Chen, J.; Dong, S.; Yu, Y.; Ma, Z.; Huang, F.
Angew. Chem., Int. Ed. 2011, 50, 1397. (h) Zhang, Z.; Luo, Y.; Xia, B.;
Han, C.; Yu, Y.; Chen, X.; Huang, F. Chem. Commun. 2011, 47, 2417.
(i) Strutt, N. L.; Forgan, R. S.; Spruell, J. M.; Botros, Y. Y.; Stoddart, J. F.
J. Am. Chem. Soc. 2011, 133, 5668. (j) Ma, Y.; Ji, X.; Xiang, F.; Chi, X.;
Han, C.; He, J.; Abliz, Z.; Chen, W.; Huang, F. Chem. Commun. 2011, 47,
12340. (k) Si, W.; Chen, L.; Hu, X.-B.; Tang, G.; Chen, Z.; Hou, J.-L.; Li,
Z.-T. Angew. Chem., Int. Ed. 2011, 50, 12564. (l) Li, C.; Chen, S.; Li, J.;
Han, K.; Xu, M.; Hu, B.; Yu, Y.; Jia, X. Chem. Commun. 2011, 47, 11294.
(m) Ma, Y.; Zhang, Z.; Ji, X.; Han, C.; He, J.; Abliz, Z.; Chen, W.; Huang,
F. Eur. J. Org. Chem. 2011, 5331. (n) Cragg, P. J.; Sharma, K. Chem. Soc.
Rev. 2012, 41, 597. (o) Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F.
Acc. Chem. Res. 2012, 45, 1294. (p) Yao, Y.; Xue, M.; Chi, X.; Ma, Y.; He,
J.; Abliz, Z.; Huang, F. Chem. Commun. 2012, 48, 6505. (q) Nier-
engarten, I.; Guerra, S.; Holler, M.; Nierengarten, J.-F.; Deschenaux, R.
Chem. Commun. 2012, 48, 8072. (r) Yu, G.; Han, C.; Zhang, Z.; Chen, J.;
Yan, X.; Zheng, B.; Liu, S.; Huang, F. J. Am. Chem. Soc. 2012, 134, 8711.
(s) Yu, G.; Zhang, Z.; Han, C.; Xue, M.; Zhou, Q.; Huang, F. Chem.
Commun. 2012, 48, 2958. (t) Ma, Y.; Chi, X.; Yan, X.; Liu, J.; Yao, Y.;
Chen, W.; Hou, J.-L.; Huang, F. Org. Lett. 2012, 14, 1532. (u) Han, C.;
Yu, G.; Zheng, B.; Huang, F. Org. Lett. 2012, 14, 1712. (v) Dong, S.;
Han, C.; Zheng, B.; Zhang, M.; Huang, F. Tetrahedron Lett. 2012, 53,
3668. (w) Guan, Y.; Ni, M.; Hu, X.; Xiao, T.; Xiong, S.; Lin, C.; Wang, L.
Chem. Commun. 2012, 48, 8529. (x) Duan, Q.; Xia, W.; Hu, X.; Ni, M.;
Jiang, J.; Lin, C.; Pan, Y.; Wang, L. Chem. Commun. 2012, 48, 8532.
(y) Zhang, Z.; Han, C.; Yu, G.; Huang, F. Chem. Sci. 2012, 3, 3026.
(z) Yu, G.; Xue, M.; Zhang, Z.; Li, J.; Han, C.; Huang, F. J. Am. Chem.
Soc. 2012, 134, 13248.
of encapsulated calcein. Moreover, these vesicles underwent
further self-assembly to produce microtubes after 4 months, and
the resultant microtubes could adsorb TNT driven by D−A
interactions. However, monomeric molecule 4 could neither
assemble into microtubes nor adsorb TNT under the same
conditions, indicating that the pillar[5]arene frame plays a
significant role in controlling self-assembly of 1 in aqueous
media. In contrast to previous studies that mainly dealt only with
the formation of 0D or 1D morphologies in water,2,3,6 this work
indicates that both 0D and 1D aggregates can be obtained from a
simple building block. It will stimulate further studies on
macrocyclic amphiphiles that can self-assemble to produce
aggregates with potential applications in biological systems and
materials science.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details; NMR spectra; SEM, TEM, and AFM
images; and other supporting materials. This material is available
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Natural Science
Foundation of China (20834004, 91027006, and 21172166), the
Fundamental Research Funds for the Central Universities
(2012QNA3013), the Program for New Century Excellent
Talents in University, and the Zhejiang Provincial Natural
Science Foundation of China (R4100009).
REFERENCES
■
(1) Jiang, Y.; Wang, Y.; Ma, N.; Wang, Z.; Smet, M.; Zhang, X.
Langmuir 2007, 23, 4029.
(2) (a) Lehn, J.-M. Science 2002, 295, 2400. (b) Li, C.; Ge, Z.; Fang, J.;
Liu, S. Macromolecules 2009, 42, 2916. (c) Guo, D.-S.; Wang, K.; Wang,
Y.-X.; Liu, Y. J. Am. Chem. Soc. 2012, 134, 10244. (d) Liu, K.; Yao, Y.;
Liu, Y.; Wang, C.; Li, Z.; Zhang, X. Langmuir 2012, 28, 10697. (e) Wang,
C.; Wang, Z.; Zhang, X. Acc. Chem. Res. 2012, 45, 608. (f) Hu, J.; Wu, T.;
Zhang, G.; Liu, S. J. Am. Chem. Soc. 2012, 134, 7624.
(3) (a) Menger, F. M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1086.
(b) Lee, M.; Cho, B.-K.; Zin, W.-C. Chem. Rev. 2001, 101, 3869.
(c) Seeman, N. C. Nature 2003, 421, 427. (d) Zhou, Y.; Yan, D. Angew.
Chem., Int. Ed. 2004, 43, 4896. (e) Hoeben, F. J. M.; Jonkheijm, P.;
Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491.
(f) Chen, D. Y.; Jiang, M. Acc. Chem. Res. 2005, 38, 494. (g) Yamamoto,
Y.; Fukushima, T.; Suna, Y.; Ishii, N.; Saeki, A.; Seki, S.; Tagawa, S.;
Taniguchi, M.; Kawai, T.; Aida, T. Science 2006, 314, 1761. (h) Ma, Y. J.;
Dong, W. F.; Hempenius, M. A.; Mohwald, H.; Vancso, G. J. Nat. Mater.
(8) (a) Schnur, J. M. Science 1993, 262, 1669. (b) Hostetler, M. J.;
Stokes, J. J.; Murray, R. W. Langmuir 1996, 12, 3604. (c) Yamada, N.;
Ariga, K.; Naito, M.; Matsubara, K.; Koyama, E. J. Am. Chem. Soc. 1998,
120, 12192. (d) Paramonov, S. E.; Jun, H.-W.; Hartgerink, J. D. J. Am.
Chem. Soc. 2006, 128, 7291.
2006, 5, 724. (i) Zhang, X.; Chen, Z. J.; Wurthner, F. J. Am. Chem. Soc.
̈
2007, 129, 4886. (j) Palmer, L. C.; Stupp, S. I. Acc. Chem. Res. 2008, 41,
1674. (k) Rudick, J. G.; Percec, V. Acc. Chem. Res. 2008, 41, 1641.
(l) Azevedo, H. S.; Velichko, Y. S.; Stupp, S. I. Science 2008, 319, 1812.
(4) Lee, M.; Lee, S.-J.; Jiang, L.-H. J. Am. Chem. Soc. 2004, 126, 12724.
(5) (a) Podkoscielny, D.; Gadde, S.; Kaifer, A. E. J. Am. Chem. Soc.
2009, 131, 12876. (b) Koshkakaryan, G.; Klivansky, L. M.; Cao, D.;
Snauko, M.; Teat, S. J.; Struppe, J. O.; Liu, Y. J. Am. Chem. Soc. 2009, 131,
2078. (c) Zhang, M.; Zhu, K.; Huang, F. Chem. Commun. 2010, 46,
8131. (d) Gu, Z.-Y.; Guo, D.-S.; Sun, M.; Liu, Y. J. Org. Chem. 2010, 75,
3600. (e) Davis, N. K. S.; Thompson, A. L.; Anderson, H. L. J. Am. Chem.
Soc. 2011, 133, 30. (f) Niu, Z.; Huang, F.; Gibson, H. W. J. Am. Chem.
(9) Chandler, D. Nature 2005, 437, 640.
(10) (a) Blau, W. J.; Fleming, A. J. Science 2004, 304, 1457.
(b) Balakrishnan, K.; Datar, A.; Zhang, W.; Yang, X.; Naddo, T.;
Huang, J.; Zuo, J.; Yen, M.; Moore, J. S.; Zang, L. J. Am. Chem. Soc. 2006,
128, 6576. (c) Hamaoui, B. E.; Zhi, L.; Pisula, W.; Kolb, U.; Wu, J.;
Mullen, K. Chem. Commun. 2007, 43, 2384.
̈
(11) Jiang, Y.; Zhao, H.; Zhu, N.; Lin, Y.; Yu, P.; Mao, L. Angew. Chem.,
Int. Ed. 2008, 47, 8601.
15715
dx.doi.org/10.1021/ja3076617 | J. Am. Chem. Soc. 2012, 134, 15712−15715