The authors acknowledge the National Natural Science
Foundation of China (20874062), the Doctoral Program of
the Ministry of Education of China (20090181110047) and
Open Project of State Key Laboratory of Supramolecular
Structure and Materials (SKLSSM201112) for funding
this work, and the Analytical & Testing Center of Sichuan
University for NMR analysis.
Notes and references
1 (a) J. S. Nowick, T. Cao and G. Noronha, J. Am. Chem. Soc.,
1994, 116, 3285; (b) E. Obert, M. Bellot, L. Bouteiller,
F. Andrioletti, C. Lehen-Ferrenbach and F. Boue, J. Am. Chem.
´
Soc., 2007, 129, 15601; (c) J. H. K. K. Hirschberg, L. Brunsveld,
A. Ramzi, J. A. J. M. Vekemans, R. P. Sijbesma and E. W. Meijer,
Nature, 2000, 407, 167; (d) L. Brunsveld, J. A. J. M. Vekemans,
J. H. K. K. Hirschberg, R. P. Sijbesma and E. W. Meijer, Proc. Natl.
Acad. Sci. U. S. A., 2002, 99, 4977.
2 (a) H. Hofmeier, R. Hoogenboom, M. E. L. Wouters and
U. S. Schubert, J. Am. Chem. Soc., 2005, 127, 2913; (b) H. Hofmeier
and U. S. Schubert, Chem. Commun., 2005, 2423; (c) K. P. Nair,
V. Breedveld and M. Weck, Macromolecules, 2011, 44, 3346.
3 (a) G. V. Oshovsky, D. N. Reinhoudt and W. Verboom, Angew.
Chem., Int. Ed., 2007, 46, 2366; (b) T. H. Rehm and C. Schmuck,
Chem. Soc. Rev., 2010, 39, 3597; (c) B. Zheng, F. Wang, S. Dong
and F. Huang, Chem. Soc. Rev., 2012, 41, 1621.
4 For selected references, see: (a) J.-M. Lehn, Supramolecular Chemistry,
Wiley-VCH, 1995; (b) L. Brunsveld, B. J. B. Folmer, E. W. Meijer and
R. P. Sijbesma, Chem. Rev., 2001, 101, 4071; (c) A. J. Wilson, Soft
Matter, 2007, 3, 409; (d) T. Xiao, S.-L. Li, Y. Zhang, C. Lin, B. Hu,
X. Guan, Y. Yu, J. Jiang and L. Wang, Chem. Sci., 2012, 3, 1417;
(e) S.-L. Li, T. Xiao, W. Xia, X. Ding, Y. Yu, J. Jiang and L. Wang,
Chem.–Eur. J., 2011, 17, 10716; (f) C. Subramani, G. Yesilbag,
B. J. Jordan, X. Li, A. Khorasani, G. Cooke, A. Sanyal and
V. M. Rotello, Chem. Commun., 2010, 46, 2067.
5 For selected reviews, see: (a) J. M. Pollino and M. Weck, Chem.
Soc. Rev., 2005, 34, 193; (b) S. K. Yang, A. V. Ambade and
M. Weck, Chem. Soc. Rev., 2011, 40, 129; (c) M. R. Hammond and
R. Mezzenga, Soft Matter, 2008, 4, 952.
Fig. 1 (a) Stacked partial 1H NMR spectra of the mixture of P1 and
2a (1 : 1 based on recognition units, 2.0 g LÀ1) in CDCl3–DMF-d7
binary solvents containing different percentage of DMF-d7 at 298 K;
(b) possible mechanism of self-assembly of the polymer chain in a
moderately polar solvent.
6 H. Ohkawa, G. B. W. L. Ligthart, R. P. Sijbesma and
E. W. Meijer, Macromolecules, 2007, 40, 1453.
7 T. Rehm and C. Schmuck, Chem. Commun., 2008, 801.
8 F. Ouhib, M. Raynal, B. Jouvelet, B. Isare and L. Bouteiller,
Chem. Commun., 2011, 47, 10683.
9 M. Li, K. Yamato, J. S. Ferguson, K. K. Singarapu, T. Szyperski
and B. Gong, J. Am. Chem. Soc., 2008, 130, 491.
10 For selected references, see: (a) Y. Li, T. Park, J. K. Quansah and
S. C. Zimmerman, J. Am. Chem. Soc., 2011, 133, 17118;
(b) Y.-Y. Zhu, G.-T. Wang and Z.-T. Li, Curr. Org. Chem.,
2011, 15, 1266; (c) Y. Yang, W.-J. Chu, J.-W. Liu and
C.-F. Chen, Curr. Org. Chem., 2011, 15, 1302; (d) P. Zhang,
H. Chu, X. Li, W. Feng, P. Deng, L. Yuan and B. Gong, Org.
Lett., 2011, 13, 53; (e) X. Li, Y. Fang, P. Deng, J. Hu, T. Li,
W. Feng and L. Yuan, Org. Lett., 2011, 13, 4628.
P1Á2a responsible for the solvophobic aggregation, leading finally
to loss of shielding capability for hydrogen bonding. Since 1Á2a is
totally disassociated in DMF above 40% (Fig. S16, ESIw), whereas
P1Á2a is subjected to full disassociation only beyond ca. 60%, it is
inferred that the intensified aggregation caused by solvophobic
interaction should be accountable for the added stability of the
hydrogen-bonded graft copolymers in moderately polar media. In
addition, the UV-vis spectra of P1 in CHCl3–DMF (3 : 2, v/v)
(10À5 M) contains a new broad peak around 310 nm at 30 1C with
increasing intensity upon gradual addition of 2a (Fig. S29, ESIw).
This result provides additional evidence for solvophobic aggrega-
tion of P1Á2a in moderately polar media.
11 (a) H. Q. Zeng, R. S. Miller, R. A. Flowers and B. Gong, J. Am.
Chem. Soc., 2000, 122, 2635; (b) L. Yuan, P. Zhang, W. Feng and
B. Gong, Curr. Org. Chem., 2011, 15, 1250.
In conclusion, we have demonstrated the successful construction
of hydrogen-bonded graft copolymers and their enhanced stabili-
zation by the cooperative action of both highly sequence-specific
hydrogen bonding which offers a larger p–p stacking surface, and
solvophobic aggregation in a moderately polar environment. As far
as we know, no examples of hydrogen-bonded graft copolymers in
organic polar media have been reported. Further derivatization of
these polymers may provide opportunities for constructing a variety
of polymeric architectures with enhanced stability in polar or
even in aqueous media.
12 R. Cao, J. Zhou, W. Wang, W. Feng, X. Li, P. Zhang, P. Deng,
L. Yuan and B. Gong, Org. Lett., 2010, 12, 2958.
13 J. Zeng, W. Wang, P. Deng, W. Feng, J. Zhou, Y. Yang, L. Yuan,
K. Yamato and B. Gong, Org. Lett., 2011, 13, 3798.
14 H. Mutlu, L. M. de Espinosa and M. A. R. Meier, Chem. Soc.
Rev., 2011, 40, 1404.
15 O. A. Scherman, G. B. W. L. Ligthart, H. Ohkawa, R. P. Sijbesma
and E. W. Meijer, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 11850.
16 H. Sun and A. E. Kaifer, Org. Lett., 2005, 7, 3845.
17 T. F. A. de Greef, M. M. L. Nieuwenhuizen, P. J. M. Stals, C. F. C.
´
Fitie, A. R. A. Palmans, R. P. Sijbesma and E. W. Meijer, Chem.
Commun., 2008, 4306.
c
This journal is The Royal Society of Chemistry 2012
9512 Chem. Commun., 2012, 48, 9510–9512