We also preliminarily investigated the possibility of whether
this catalytic system could be effective towards the alkenylation of
coumarins and observed that coumarin 1a reacted with alkene
(3 equiv.) under slightly altered reaction conditions (eqn (1)).16
4 For selected reports, see: (a) M. Kitahara, N. Umeda, K. Hirano,
T. Satoh and M. Miura, J. Am. Chem. Soc., 2011, 133, 2160;
(b) C.-Y. He, S. Fan and X. Zhang, J. Am. Chem. Soc., 2010,
132, 12850; (c) P. Xi, F. Yang, S. Qin, D. Zhao, J. Lan, G. Gao,
C. Hu and J. You, J. Am. Chem. Soc., 2010, 132, 1822;
(d) K. L. Hull and M. S. Sanford, J. Am. Chem. Soc., 2009,
131, 9651; (e) D. Kim and S. Hong, Org. Lett., 2011, 13, 4466;
(f) Y. Moon and S. Hong, Chem. Commun., 2012, 48, 7191.
5 (a) J. R. S. Hoult and M. Paya, Gen. Pharmacol., 1996, 27, 713;
(b) I. Kostova, Curr. Med. Chem.: Anti-Cancer Agents, 2005, 5, 29;
(c) L. M. Kabeya, A. A. deMarchi, A. Kanashiro, N. P. Lopes,
C. da Silva, M. T. Pupo and Y. M. Lucisano-Valima, Bioorg. Med.
Chem., 2007, 15, 1516.
ð1Þ
In summary, we developed an efficient method for the
oxidative cross-coupling of the coumarins and unactivated
arenes via a palladium-catalyzed twofold C–H functionalization.
This approach offers an unprecedented direct route to the
C4-selective arylation of coumarins with simple arene partners
under mild conditions. The substrate scope was broad, permitting
the construction of a variety of 4-arylcoumarins (neoflavones),
which are prominent structural motifs in many biologically
active compounds. Detailed mechanistic studies and synthetic
applications are now underway.
6 (a) R. S. Koefod and K. R. Mann, Inorg. Chem., 1989, 28, 2285;
(b) P. T. Thuong, T. M. Hung, T. M. Ngoc, D. T. Ha, B. S. Min,
S. J. Kwack, T. S. Kang, J. S. Choi and K. Bae, Phytother. Res.,
2010, 24, 101; (c) R. Dayam, R. Gundla, L. O. Al-Mawsawi and
N. Neamati, Med. Res. Rev., 2008, 28, 118.
7 (a) T. Janecki and R. Bodalski, Synthesis, 1989, 506;
(b) T. Minami, Y. Matsumoto, S. Nakamura, S. Koyanagi and
M. Yamaguchi, J. Org. Chem., 1992, 57, 167; (c) M.-S. Schiedel,
C. A. Briehn and P. Bauerle, Angew. Chem., Int. Ed., 2001,
¨
40, 4677; (d) G.-J. Kim, K. Lee, H. Kwon and H.-J. Kim, Org.
Lett., 2011, 13, 2799; (e) J. Gordo, J. Avo, A. J. Parola, J. C. Lima,
´
A. Pereira and P. S. Branco, Org. Lett., 2011, 13, 5112.
8 For examples, see: (a) Z. Y. Tang and Q.-S. Hu, Adv. Synth. Catal.,
2004, 346, 1635; (b) J.-G. Lei, M.-H. Xu and G.-Q. Lin, Synlett,
2004, 2364; (c) J. Wu, L. Wang, R. Fathi and Z. Yang, Tetrahedron
Lett., 2002, 43, 4395; (d) L. Schio, F. Chatreaux and M. Klich,
Tetrahedron Lett., 2000, 41, 1543; (e) J. Wu and Z. Yang, J. Org.
Chem., 2001, 66, 7875; (f) J. Wu, Y. Liao and Z. Yang, J. Org.
Chem., 2001, 66, 3642.
This research was supported by National Research Foundation
of Korea (NRF) through general research grants (NRF-2010-
0022179, 2011-0016436, 2011-0020322). M. Min is the recipient of
a Global PhD Fellowship (NRF-2011-0007511).
Notes and references
9 (a) M. Khoobi, M. Alipour, S. Zarei, F. Jafarpour and A. Shafiee,
Chem. Commun., 2012, 48, 2985; (b) Y. Li, Z. Qi, H. Wang, X. Fu
and C. Duan, J. Org. Chem., 2012, 77, 2053.
1 For selected reviews on C–H activation, see: (a) J. Wencel-Delord,
T. Droge, F. Liu and F. Glorius, Chem. Soc. Rev., 2011, 40, 4740;
¨
(b) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147;
(c) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev., 2010,
110, 624; (d) L.-M. Xu, B.-J. Li, Z. Yang and Z.-J. Shi, Chem. Soc.
Rev., 2010, 39, 712; (e) C.-J. Li, Acc. Chem. Res., 2009, 42, 335;
(f) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem.,
Int. Ed., 2009, 48, 5094; (g) R. Giri, B.-F. Shi, K. M. Engle, N. Maugel
and J.-Q. Yu, Chem. Soc. Rev., 2009, 38, 3242; (h) I. V. Seregin and
V. Gevorgyan, Chem. Soc. Rev., 2007, 36, 1173; (i) C. S. Yeung and
V. M. Dong, Chem. Rev., 2011, 111, 1215; (j) D. Alberico, M. E. Scott
and M. Lautens, Chem. Rev., 2007, 107, 174; (k) L.-C. Campeau and
K. Fagnou, Chem. Soc. Rev., 2007, 36, 1058.
2 For selected reviews, see; (a) S.-H. Cho, J. Y. Kim, J. Kwak and
S. Chang, Chem. Soc. Rev., 2011, 40, 5068; (b) L. Ackermann,
R. Vicente and A. R. Kapdi, Angew. Chem., Int. Ed., 2009, 48, 9792.
3 For selected reports, see: (a) B.-J. Li, S.-L. Tian, Z. Fang and Z.-J. Shi,
Angew. Chem., Int. Ed., 2008, 47, 1115; (b) H. Cho, S. J. Hwang and
S. Chang, J. Am. Chem. Soc., 2008, 130, 9254; (c) D. R. Stuart and
K. Fagnou, Science, 2007, 316, 1172; (d) D. R. Stuart, E. Villemure and
K. Fagnou, J. Am. Chem. Soc., 2007, 129, 12072.
10 (a) F. Chen, Z. Feng, C.-Y. He, H.-Y. Wang, Y.-L. Guo and
X. Zhang, Org. Lett., 2012, 14, 1176; (b) Y.-Y. Yu,
M. J. Niphakis and G. I. Georg, Org. Lett., 2011, 13, 5932;
(c) L. Bi and G. I. Georg, Org. Lett., 2011, 13, 5413; (e) D. Cheng
and T. Gallagher, Org. Lett., 2009, 11, 2639; (d) H. Geo,
M. J. Niphakis and G. I. Georg, J. Am. Chem. Soc., 2008, 130, 3708.
11 G. Signore, R. Nifosi, L. Albertazzi, B. Storti and R. Bizzarri,
J. Am. Chem. Soc., 2010, 132, 1276.
12 (a) M. Lafrance and K. Fagnou, J. Am. Chem. Soc., 2006, 128,
16496; (b) M. Lafrance, D. Lapointe and K. Fagnou, Tetrahedron,
2008, 64, 6015; (c) S. Potavathri, K. C. Pereira, S. I. Gorelsky,
A. Pike, A. P. LeBris and B. DeBoef, J. Am. Chem. Soc., 2010,
132, 14676.
13 In all cases, an appreciable amount of the C3 products (3–8%) was
formed.
14 Ratio was determined by H NMR spectroscopy.
1
15 The reaction with toluene produced a 2 : 1 mixture of the inseparable
meta/para isomers in a 77% combined yield.
16 Unoptimized conditions.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 9613–9615 9615