From a green chemistry point of view, enzyme-catalyzed
kinetic resolution (KR) of a racemate has proved to be a
convenient method to obtain enantiomerically enriched
materials.11 Although lipase-catalyzed resolutions seem to
be ideal in both academic and industrial applications, they
can only provide the desired enantiomerically enriched
product in a maximum theoretical yield of 50%. This
limitation can be overcome in dynamic kinetic resolution
(DKR) in which the enzyme-mediated enantioselective
transformation is integrated with an in situ racemization
of the starting material, usually by a metal.12 Since the fast-
reacting enantiomer is never depleted from the reaction
mixture, a theoretical yield of 100% can be obtained and
this makes DKR a powerful tool for the preparation of
enantiomerically enriched compounds in high yields. Over
the past decade, we have developed highly efficient DKR
protocols for secondary12c and primary alcohols13 as well
as for amines,14 and in some cases we have demonstrated
synthetic applications toward biologically interesting com-
pounds.14a,15 Recently we reported on an efficient DKR
for cyclic and acyclic allylic alcohols, utilizing ruthenium
catalyst 1 for the racemization and Candida antarctica
lipase B (CALB) or Subtilisin Carlsberg for the enzymatic
kinetic resolution.16 Both (R)- and (S)-acetates could be
obtained with high enantiopurity and in high yields de-
pending on the enzyme applied.
Here we wish to report on a general route for the
enantioselective synthesis of R-alkylated cyclic ketones
and their corresponding lactones, utilizing DKR in the
enantiodetermining step. Our synthetic strategy begins
with DKR of the exocyclic allylic alcohols (I), with the
use of ruthenium catalyst 1 and CALB, producing the
corresponding allylic esters (II). Subsequent Cu-catalyzed
allylic R-substitution proceeds with inversion of the stereo-
chemistry and forms alkenes (III). Further oxidative clea-
vage of the CdC bond releases the hidden ketone
functionality (IV). Finally, BaeyerꢀVilliger oxidation pro-
duces the enantiomerically pure lactones (V) (Scheme 1).
(8) (a) Takaya, Y.; Senda, T.; Kurushima, H.; Ogasawara, M.;
Hayashi, T. Tetrahedron: Asymmetry 1999, 10, 4047–4056. (b) Kina,
A.; Ueyama, K.; Hayashi, T. Org. Lett. 2005, 7, 5889–5892. (c) Kurihara,
K.; Sugishita, N.; Oshita, K.; Piao, D.; Yamamoto, Y.; Miyaura, N.
J. Organomet. Chem. 2007, 692, 428–435.
(9) For instance: (a) Pd-catalyzed oxidative cyclization: Trend,
R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stoltz, B. Angew. Chem.,
Int. Ed. 2003, 42, 2892–2895. (b) Au-catalyzed cyclization: Genin, E.;
Toullec, P. Y.; Antoniotti, S.; Brancour, C.; Genet, J.-P.; Michelet, V.
J. Am. Chem. Soc. 2006, 128, 3112–3113. (c) AgOTf-catalyzed intramo-
lecular additions of hydroxyl or carbonyl gropus to olefins: Yang,
C.-G.; Reich, N. W.; Shi, Z.; He, C. Org. Lett. 2005, 7, 4553–4556.
(10) Enzymatic resolution: (a) Forzato, C.; Gandolfi, R.; Molinari,
F.; Nitti, P.; Pitacco, G.; Valentin, E. Tetrahedron: Asymmetry 2001, 12,
1039–1046. (b) Brenna, E.; Negri, C. D.; Fuganti, C.; Serra, S. Tetra-
hedron: Asymmetry 2001, 12, 1871–1879. (c) Shimotori, Y.; Miyakoshi,
T. Synth. Commun. 2009, 39, 1570–1582.
Scheme 1. Synthetic Strategy Toward Enantioenriched
R-Alkylated Ketones (IV) and Lactones (V) via Tandem
DKR and Cu-Catalyzed Allylic Substitution (n = 1, 2)
(11) (a) Ghanem, A.; Aboul-Enein, H. Y. Tetrahedron: Asymmetry
2004, 15, 3331–3351. (b) Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases
in Organic Synthesis: Regio- and Stereoselective Biotransformations, 2nd ed.;
Wiley-VCH: Weinheim, 2005. (c) Faber, K. Biotransformations in Organic
Synthesis, 6th ed.; Springer: 2011.
€
(12) (a) Sturmer, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 1173–
€
1174. (b) Larsson, A. L. E.; Persson, B. A.; Backvall, J.-E. Angew.
Chem., Int. Ed. Engl. 1997, 36, 1211–1212. (b) Martın-Matute, B.; Edin,
M.; Bogar, K.; Backvall, J.-E. Angew. Chem., Int. Ed. 2004, 43, 6535–
´
ꢀ
€
ꢀ
6539. (c) Martın-Matute, B.; Edin, M.; Bogar, K.; Kaynak, F. B.;
´
€
Backvall, J.-E. J. Am. Chem. Soc. 2005, 127, 8817–8825. (c) Choi,
J. H.; Kim, Y.-H.; Nam, S. H.; Shin, S. T.; Kim, M.-J.; Park, J. Angew.
Chem., Int. Ed. 2002, 41, 2373–2376. (d) Noyori, R.; Tokunaga, M.;
Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36–56. (e) Bouzemi, N.;
Aribi-Zouioueche, L.; Fiaud, J.-C. Tetrahedron: Asymmetry 2006, 17,
€
´
n-Matute, B.; Backvall, J.-E. Curr. Opin. Chem. Biol.
797–800. (f) Martı
The cyclic allylic alcohol substrates 2a and 2b were
synthesized by a straightforward two-step procedure (see
Supporting Information for further details). Subsequent
DKR of 2a and 2b was performed according to the
previously published procedure (Table 1).16 Both acylated
products (R)-3a and (R)-3b were obtained in good isolated
yields and excellent ee (>99%) using ruthenium catalyst
1 and Candida antarctica lipase B (CALB). A slightly
€
n-Matute; J.-E. Backvall, Dynamic
2007, 11, 226–232. (g) B. Martı
´
Kinetic Resolution. In Asymmetric Organic Synthesis with Enzymes;
Gotor, V.; Alfonso, I.; Garcia-Urdiales, E., Eds.; Wiley-VCH: Weinheim,
€
Germany, 2008; pp 89ꢀ113. (h) Martı
´
n-Matute, B.; Backvall, J.-E.
Chemoenzymatic Deracemization Processes. In Organic Synthesis with
Enzymes in Non-Aqueous Media; Carrea, G., Riva, S., Eds.; Wiley-VCH:
Weinheim, Germany, 2008: pp 113ꢀ144. (i) Ahn, Y.; Ko, S.-B.; Kim,
M.-J.; Park, J. Coord. Chem. Rev. 2008, 252, 647–658.
€
€
(13) Strubing, D.; Krumlinde, P.; Piera, J.; Backvall, J.-E. Adv.
Synth. Catal. 2007, 349, 1577–1581.
ꢀ
(14) (a) Thalen, L. K.; Zhao, D.; Sortais, J. B.; Paetzold, J.; Hoben,
€
C.; Backvall, J. E. Chem.;Eur. J. 2009, 15, 3403–3410. For work by
ꢀ ꢀ ꢀ €
(16) (a) Bogar, K.; Vidal, P. H.; Alcantara Leon, A. R.; Backvall,
others, see: (b) Kim, M.-J.; Kim, W.-H.; Han, K.; Choi, Y. K.; Park, J.
Org. Lett. 2007, 9, 1157–1159. (c) Gastaldi, S.; Escoubet, S.; Vanthuyne,
N.; Gil, G.; Bertrand, M. P. Org. Lett. 2007, 9, 837–839. (d) Parvulescu,
A. N.; Jacobs, P. A.; De Vos, D. E. Chem.;Eur. J. 2007, 13, 2034–2043.
(e) Parvulescu, A. N.; Jacobs, P. A.; De Vos, D. E. Appl. Catal. A:
General 2009, 368, 9–16.
ꢀ
ꢀ
J.-E. Org. Lett. 2007, 9, 3401–3404. (b) Thalen, L. K.; Sumic, A.; Bogar,
€
K.; Norinder, J.; Persson, A. K. A.; Backvall, J.-E. J. Org. Chem. 2010,
75, 6842–6847.
(17) (a) Fourquet, M.; Schlosser, M. Angew. Chem., Int. Ed. 1974, 13,
82–83. (b) Tseng, C. C.; Paisley, S. D.; Gering, H. L. J. Org. Chem. 1986,
€ ꢀ
51, 2884–2891. (c) Backvall, J.-E.; Sellen, M.; Grant, B. J. Am. Chem.
€
ꢀ
€
ꢀ
(15) (a) Traff, A.; Bogar, K.; Warner, M.; Backvall, J.-E. Org. Lett.
€
€
2008, 10, 4807–4810. (b) Krumlinde, P.; Bogar, K.; Backvall, J.-E.
J. Org. Chem. 2009, 74, 7407–7410. (c) Krumlinde, P.; Bogar, K.;
Soc. 1990, 112, 6615–6621. (d) Meuzelaar, G. J.; Karlstrom, A. S. E.; van
ꢀ
€
Klaveren, M.; Persson, E. S. M.; del Villar, A.; van Koten, G.; Backvall,
€
Backvall, J.-E. Chem.;Eur. J. 2010, 16, 4031–4036. (d) Norinder, J.;
J.-E. Tetrahedron 2000, 56, 2895–2903. (e) Ito, M.; Matsuumi, M.;
Murugesh, M. G.; Kobayashi, Y. J. Org. Chem. 2001, 66, 5881–5889.
ꢀ
€
Bogar, K.; Kanupp, L.; Backvall, J.-E. Org. Lett. 2007, 9, 5095–5098.
ꢀ
€
€
€
(e) Johnston, E. V.; Bogar, K.; Backvall, J.-E. J. Org. Chem. 2010, 75,
(f) Karlstrom, A. S. E.; Backvall, J.-E. In Modern Organocopper
Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim, Germany, 2002;
pp 259ꢀ288.
€
€
4596–4599. (f) Traff, A. M.; Lihammar, R.; Backvall, J.-E. J. Org. Chem.
2011, 76, 3917–3921.
B
Org. Lett., Vol. XX, No. XX, XXXX