ORGANIC
LETTERS
Total Synthesis of 70,80-Dihydroaigialospirol
2012
Vol. 14, No. 19
5154–5157
Tsz-Ying Yuen and Margaret A. Brimble*
School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland,
New Zealand
Received September 11, 2012
ABSTRACT
A highly convergent total synthesis of 70,80-dihydroaigialospirol is described. Key steps of the synthesis include a NozakiꢀHiyamaꢀKishi (NHK)
coupling of an iodoalkyne with an advanced phthalide-aldehyde and a remarkable one-pot acid-mediated global deprotection/spiroacetalization.
The aigialomycins AꢀE (1ꢀ5; Figure 1) belong to the
resorcylic acid lactone family of natural products that were
isolated from the mangrove fungus Aigialus parvus BCC
5311.1 These 14-membered resorcylic macrolides differ
only in the oxidation pattern around the macrocyclic ring
and/or the configuration of the olefin at C10ꢀC20. The
most potent member of the family, aigialomycin D (4),
exhibits antimalarial1 (IC50: 6.6 μg/mL against P. falci-
parum), antitumor1 (IC50: 3.0 μg/mL for KB cells and 1.8
μg/mL for Vero cells), and kinase inhibitory activity2,3
(IC50: 6 μM for CDK1/5, 21 μM for CDK2, and 14 μM for
GSK). Consequently, 4 has attracted considerable interest
from the synthetic community, resulting in eight total
syntheses.2,4 Additional aigialomycin derivatives (6ꢀ10),
obtained by extended fermentation of Aigialus parvus,
have since been reported.5 Associated bioactivity of these
novel metabolites has not been reported.
As part of our ongoing synthetic program to probe the
pharmacological properties of spiroacetal-containing nat-
ural products (especially aromatic spiroacetals),6,7 our
attention focused on the total synthesis of the spiroacetal-
containing members of the post-PKS modified aigialomy-
cin derivatives (8ꢀ10). To date, only one total synthesis of
these phthalide-spiroacetals has been reported by the
Hsung group,8 wherein aigialospirol (8) was furnished
using a cyclic acetal-tethered ring-closing metathesis with
a late stage epimerization of the spiroacetal center under
acidic conditions. Based onthisobservation, wepostulated
that an acid-catalyzed spirocyclization would be an effec-
tive strategy to achieve the direct formation of these
(1) Isaka, M.; Suyarnsestakorn, C.; Tanticharoen, M.; Kongasaeree,
P.; Thebtaranonth, Y. J. Org. Chem. 2002, 5, 1561.
(2) Barluenga, S.; Dakas, P.-Y.; Ferandin, Y.; Meijer, L.; Winssinger,
N. Angew. Chem., Int. Ed. 2006, 45, 3951.
(3) Xu, J.; Chen, A.; Go., M.-L.; Nacro, K.; Liu, B.; Chai., C. L. L.
ACS Med. Chem. Lett. 2011, 2, 662.
(6) For selected reports on the synthesis of aromatic spiroacetals, see:
(a) Rathwell, D. C. K.; Yang, S.-H.; Tsang, K. Y.; Brimble, M. A.
Angew. Chem., Int. Ed. 2009, 48, 7996. (b) Yuen, T.-Y.; Yang, S.-H.;
Brimble, M. A. Angew. Chem., Int. Ed. 2011, 50, 8350–8353. (c) McLeod,
M. C.; Wilson, Z. E.; Brimble, M. A. Org. Lett. 2011, 13, 5382. (d)
McLeod, M. C.; Wilson, Z. E.; Brimble, M. A. J. Org. Chem. 2012, 77,
400.
(7) For reports on the synthesis and associated anti-Helicobacter
pylori activity of the phthalide-spiroacetal spirolaxine methyl ether
derivatives, see: (a) Radcliff, F. J.; Fraser, J. D.; Wilson, Z. E.; Heapy,
A. M.; Robinson, J. E.; Bryant, C. J.; Flowers, C. L.; Brimble, M. A.
Bioorg. Med. Chem. 2008, 16, 6179. (b) Dimitrov, I.; Furkert, D. P.;
Fraser, J. D.; Radcliff, F. J.; Finch, O.; Brimble, M. A. Med. Chem.
Commun. 2012, 3, 938.
(4) (a) Geng., X. D.; Danishefsky, S. J. Org. Lett. 2004, 6, 413. (b)
Yang, Z.-Q.; Geng, X. D.; Solit, D.; Pratilas, C. A.; Rosen, N.;
Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 7881. (c) Lu, J.; Ma,
J.; Xie, X.; Chen, B.; She, X.; Pan, X. Tetrahedron: Asymmetry 2006, 17,
1066. (d) Vu, N. Q.; Chai, C. L. L.; Lim, K. P.; Chia, S. C.; Anqi, C.
Tetrahedron 2007, 63, 7053. (e) Chrovian, C. C.; Knapp-Reed, B.;
Montgomery, J. Org. Lett. 2008, 10, 811. (f) Baird, L. J.; Timmer,
M. S. M.; Teesdale-Spittle, P. H.; Harvey, J. E. J. Org. Chem. 2009, 74,
2271. (g) Calo, F.; Richardson, J.; Barrett, A. G. M. Org. Lett. 2009, 11,
4910.
(5) (a) Vongvilai, P.; Isaka, M.; Kittakoop, P.; Srikitikulchai, P.;
Kongasaeree, P.; Thebtaranonth, Y. J. Nat. Prod. 2004, 67, 457. (b)
Isaka, M.; Yangchum, A.; Intamas, S.; Kocharin, K.; Jones, E. B. G.;
Kongsaeree, P.; Prabpai, S. Tetrahedron 2009, 65, 4396.
(8) (a) Figueroa, R.; Hsung, R. P.; Guevarra, C. C. Org. Lett. 2007, 9,
4857. (b) Figueroa, R.; Feltenberger, J. B.; Guevarra, C. C.; Hsung, R. P.
Sci. China, Ser. B: Chem. 2011, 54, 31.
r
10.1021/ol302498v
Published on Web 09/27/2012
2012 American Chemical Society