Page 5 of 6
Journal of the American Chemical Society
Ni–(H2) Adduct as an Intermediate in H‒H Oxidative Addition across a
(11) For reversible atom/group transfer between transition metals and
silicon involving silyl and silane moieties, see also: (a) Takaya, J.; Iwasawa,
N. Bis(o-phosphinophenyl)silane as a Scaffold for Dynamic Behavior of
H‒Si and C‒Si Bonds with Palladium(0). Organometallics 2009, 28, 6636–
6638. (b) Kirai, N.; Takaya, J.; Iwasawa, N. Two Reversible σ‑Bond
Metathesis Pathways for Boron−Palladium Bond Formation: Selective
Synthesis of Isomeric Five-Coordinate Borylpalladium Complexes. J. Am.
Chem. Soc. 2013, 135, 2493−2496. (c) Takaya, J.; Iwasawa, N. Silyl Ligand
Mediated Reversible -Hydrogen Elimination and Hydrometalation at
Palladium Chem. Eur. J. 2014, 20, 1181 –11819. (d) Kim, J.; Kim, Y.-E.;
Park, K.; Lee, Y. A Silyl-Nickel Moiety as a Metal–Ligand Cooperative
Site. Inorg. Chem. 2019, 58, 11534‒11545.
(12) (a) Ke, I.‐S.; Jones, J. S.; Gabbaï, F. P. Anion-Controlled Switching
of an XꢀLigand into a ZꢀLigand: Coordination Non-Innocence of a
Stiboranyl Ligand. Angew. Chem. Int. Ed. 2014, 53, 2633‒2637. (b) Jones,
J. S.; Wade, C. R.; Gabbaï, F. P. Redox and Anion Exchange Chemistry of
a Stibine Nickel Complex: Writing the L, X, Z Ligand Alphabet with a
Single Element. Angew. Chem. Int. Ed. 2014, 53, 8876–8879.
Ni‒B Bond. Angew. Chem. Int. Ed. 2014, 53, 1081–1086. (c) MacMillan,
S. N.; Harman, W. H.; Peters, J. C. Facile Si–H Bond Activation and
Hydrosilylation Catalysis Mediated by a Nickel–borane Complex. Chem.
Sci. 2014, 5, 590–597. (d) Cowie, B. E.; Emslie, D. J. H. Platinum
1
2
3
4
5
6
7
8
Complexes
of
a
Borane-Appended
Analogue
of
1,1’-
Bis(diphenylphosphino)ferrocene: Flexible Borane Coordination Modes
and in situ Vinylborane Formation. Chem. Eur. J. 2014, 20, 16899–16912.
(e) Barnett, B. R.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S.
Cooperative Transition Metal/Lewis Acid Bond-Activation Reactions by a
Bidentate (Boryl)iminomethane Complex: A Significant Metal–Borane
Interaction Promoted by a Small Bite-Angle LZ Chelate. J. Am. Chem. Soc.
2014, 136, 10262–10265. (f) Devillard, M.; Declercq, R.; Nicolas, E.;
Ehlers, A. W.; Backs, J.; Saffon-Merceron, N.; Bouhadir, G.; Slootweg, J.
C.; Uhl, W.; Bourissou, D. A Significant but Constrained Geometry PtAl
Interaction: Fixation of CO2 and CS2, Activation of H2 and PhCONH2. J.
Am. Chem. Soc. 2016, 138, 4917–4926. (g) Li, Y.; Hou, C.; Jiang, J.; Zhang,
Z.; Zhao, C.; Page, A. J.; Ke, Z. General H2 Activation Modes for Lewis
Acid-Transition Metal Bifunctional Catalysts. ACS Catal. 2016, 6, 1655–
1662. (h) Cammarota, R. C.; Lu, C. C. Tuning Nickel with Lewis Acidic
Group 13 Metalloligands for Catalytic Olefin Hydrogenation. J. Am. Chem.
Soc. 2015, 137, 12486–12489. (i) Ramirez, B. L.; Lu, C. C. Rare-Earth
Supported Nickel Catalysts for Alkyne Semihydrogenation: Chemo- and
Regioselectivity Impacted by the Lewis Acidity and Size of the Support. J.
Am. Chem. Soc. 2020, 142, 5396−5407.
(6) Devillard, M.; Bouhadir, G.; Bourissou, D. Cooperation between
Transition Metals and Lewis Acids: a New Way to Activate H2 and H–E
bonds. Angew. Chem. Int. Ed. 2015, 54, 730–732.
(7) Kameo, H.; Yamamoto, J.; Asada, A.; Nakazawa, H.; Bourissou, D.
Palladium-Borane Cooperation: Evidence for an Anionic Pathway and its
Application to Catalytic Hydro- / Deutero-dechlorination. Angew. Chem.
Int. Ed. 2019, 58, 18783‒18787.
(8) (a) Gualco, P.; Lin, T.-P.; Sircoglou, M.; Ladeira, S.; Bouhadir, G.;
Pérez, L. M.; Amgoune, A.; Maron, L.; Gabbaï, F. P.; Bourissou, D.
Gold→Silane and Gold→Stannane Complexes: Coordination of Saturated
Molecules as -Acceptor Ligands. Angew. Chem. Int. Ed. 2009, 48,
9892‒9895. (b) Gualco, P.; Mercy, M.; Ladeira, S.; Coppel, Y.; Maron, L.;
Amgoune, A.; Bourissou, D. Hypervalent Silicon Compounds upon
Coordination of Diphosphine-silanes to Gold. Chem. Eur. J. 2010, 16,
10808‒10817. (c) Kameo, H.; Nakazawa, H. Saturated Heavier Group 14
Compounds as σ-Electron-Acceptor (Z-Type) Ligands. Chem. Rec. 2017,
17, 268‒286.
(9) For transition metal-mediated Si‒F activations involving Z-type
coordination, see: (a) Kameo, H.; Sakaki, S. Activation of Strong
Boron‒Fluorine and Silicon‒Fluorine σ-Bonds: Theoretical Understanding
and Prediction. Chem. Eur. J. 2015, 21, 13588‒13597. (b) Kameo, H.;
Kawamoto, T.; Sakaki, S.; Bourissou, D.; Nakazawa, H. Transition-Metal-
Mediated Cleavage of Fluoro-Silanes under Mild Conditions. Chem. Eur.
J. 2016, 22, 2370‒2375.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(13) (a) Korch, K. M.; Watson, D. A. Cross-Coupling of Heteroatomic
Electrophiles. Chem. Rev. 2019, 119, 8192‒8228. (b) Terao, J.; Torii, K.;
Saito, K.; Kambe, N.; Baba, A.; Sonoda, N. Zirconocene-Catalyzed
Silylation of Alkenes with Chlorosilanes. Angew. Chem. Int. Ed. 1998, 37,
2653‒2656. (c) McAtee, J. R.; Martin, S. E. S.; Ahneman, D. T.; Johnson,
K. A.; Watson, D. A. Preparation of Allyl and Vinyl Silanes by the
Palladium
‐Catalyzed Silylation of Terminal Olefins: A Silyl-Heck
Reaction. Angew. Chem. Int. Ed. 2012, 51, 3663‒3667. (d) Martin, S. E. S.;
Watson, D. A. Preparation of Vinyl Silyl Ethers and Disiloxanes via the
Silyl-Heck Reaction of Silyl Ditriflates. J. Am. Chem. Soc. 2013, 135,
13330‒13333. (e) Cinderella, A. P.; Vulovic, B.; Watson, D. A. Palladium-
Catalyzed Cross-Coupling of Silyl Electrophiles with Alkylzinc Halides: A
Silyl-Negishi Reaction. J. Am. Chem. Soc. 2017, 139, 7741‒7744. (f)
Vulovic, B.; Cinderella, A. P.; Watson, D. A. Palladium-Catalyzed Cross-
Coupling of Monochlorosilanes and Grignard Reagents. ACS Catal. 2017,
7, 8113‒8117. (g) Matsumoto, K.; Huang, J.; Naganawa, Y.; Guo, H.;
Beppu, T.; Sato, K.; Shimada, S.; Nakajima, Y. Direct Silyl-Heck Reaction
of Chlorosilanes. Org. Lett. 2018, 20, 2481‒2484.
(14) Bond dissociation energies for R3Si‒F bonds > 150 kcal/mol, see Y.-
R. Luo, Handbook of bond dissociation energies in organic compounds,
CRC press, 2002.
(15) Ohashi, M.; Kambara, T.; Hatanaka, T.; Saijo, H.; Doi, R.; Ogoshi,
S. Palladium-Catalyzed Coupling Reactions of Tetrafluoroethylene with
Arylzinc Compounds. J. Am. Chem. Soc. 2011, 133, 3256‒3259.
(16) See Supporting Information for details.
(17) Abstraction of the fluoride at Si was supported in this case by the
characterization of the fluoroborate [FB(C6F5)3]‒ upon monitoring the
reaction by 19F{1H} NMR spectroscopy (Figure S1A).16
(18) Analogous 2-coordination is known for aryl-boranes, see: Emslie,
D. J. H.; Cowie, B. E.; Kolpin, K. B. Acyclic Boron-Containing -Ligand
Complexes: 2- and 3-Coordination Modes. Dalton Trans. 2012, 41,
1101–1117.
(10) For stoichiometric activations of B‒F, P‒F, Sb‒F bonds at transition
metals involving Z-type coordination, see: (a) Bauer, J.; Braunschweig, H.;
Kraft, K.; Radacki, K. Oxidative Addition of Boron Trifluoride to a
Transition Metal Angew. Chem. Int. Ed. 2011, 50, 10457‒10460. (b) Bauer,
J.; Braunschweig, H.; Dewhurst, R. D.; Radacki, K. Reactivity of Lewis
Basic Platinum Complexes Towards Fluoroboranes Chem. Eur. J. 2013, 19,
8797–8805. (c) Arnold, N.; Bertermann, R.; Bickelhaupt, F. M.;
Braunschweig, H.; Drisch, M.; Finze, M.; Hupp, F.; Poater, J.; Sprenger, J.
A. P. Formation of a Trifluorophosphane Platinum(II) Complex by P−F
Bond Activation of Phosphorus Pentafluoride with a Pt0 Complex. Chem.
Eur. J. 2017, 23, 5948‒5952. (d) You, D.; Yang, H.; Sen, S.; Gabbaï, F. P.
Modulating the σ-Accepting Properties of an Antimony Z-type Ligand via
Anion Abstraction: Remote-Controlled Reactivity of the Coordinated
Platinum Atom. J. Am. Chem. Soc. 2018, 140, 9644‒9651.
(19) Batsanov, S. S. Van der Waals Radii of Elements. Inorg. Mater.
2001, 37, 871‒885.
(20) The 29Si NMR signal is shifted to higher field and the JSi-F coupling
constant is reduced upon coordination of 2 to Pd, in line with that reported
previously for related gold complexes.8a,b
(21) For fluoride abstraction from a PtSb‒F complex with B(C6F5)3,
see ref. 10d.
(22) (a) Withers, P. J. A.; Elser, J. J.; Hilton, J.; Ohtake, H.; J. Schipper,
W. J.; van Dijk, K. C. Greening the Global Phosphorus Cycle: How Green
Chemistry can Help Achieve Planetary P Sustainability. Green Chem. 2015,
17, 2087‒2099. (b) Keijer, T.; Bakker. V.; Slootweg, J. C. Circular
Chemistry to Enable a Circular Economy. Nat. Chem. 2019, 11, 190‒195.
5
ACS Paragon Plus Environment