Journal of Medicinal Chemistry
Article
temperature under nitrogen atmosphere for 12 h. When TLC indicated
complete consumption of starting material, the reaction mixture was
cooled and filtered through a short pad of silica gel. The obtained filtrate
was evaporated to give a crude reaction mixture, which was subjected to
purification by flash column chromatography on silica gel with 10−30%
acetone in CH2Cl2 as eluent to furnish the desired compound.
2,2′-((Pyridin-4-ylmethyl)azanediyl)diethanol (52). This com-
pound was obtained as a pale brown oil (1.6 g, 18%) from 51 (4.8 g,
45.7 mmol), 4-(chloromethyl)pyridine hydrochloride (7.5 g, 45.7
mmol), K2CO3 (13.0 g, 94.2 mmol), and acetonitrile (140 mL)
according to the general procedure I described above. 1H NMR
(CDCl3) δ 2.60 (t, J = 5.20 Hz, 4 H), 3.55 (t, J = 5.20 Hz, 4H), 3.64 (s,
2H), 4.25 (br, 2H), 7.25 (d, J = 6.0 Hz, 2H), 8.33 (d, J = 6.0 Hz, 2H). 13C
NMR (CDCl3) δ 56.2, 58.4, 59.5, 123.9, 149.1, 149.4. LRMS (ESI) m/z
197 (M+ + H, 100), 219 (M+ + Na, 18). HRMS (ESI) Calcd for
C10H17N2O2 (M+ + H) 197.1290. Found 197.1281.
1,7-Bis[4′-(4H-chromen-4-on-2-yl)phenyl]-4-(4-pyridylmethyl)-
1,7-dioxa-4-azaheptane (53). This compound was obtained as a white
foam (0.81 g, 23%) from 52 (1.08 g, 5.51 mmol), 4′-hydroxyflavone
(2.65 g, 11.1 mmol), triphenylphosphine (3.10 g, 11.8 mmol), THF (30
mL), and DIAD (2.40 g, 11.8 mmol) according to the general procedure
II described above. 1H NMR (CDCl3) δ 3.13 (t, J = 4.8 Hz, 4H), 3.93 (s,
2H), 4.16 (t, J = 4.8 Hz, 4H), 6.73 (s, 2H), 6.97 (d, J = 8.6 Hz, 4H), 7.34
(dd, J = 7.2, 8.0 Hz, 2H), 7.38 (d, J = 6.0 Hz, 2H), 7.52 (d, J = 8.4 Hz,
2H), 7.67 (dd, J = 7.2, 8.0 Hz, 2H), 7.86 (d, J = 8.6 Hz, 4H), 8.19 (dd, J =
1.2, 8.0 Hz, 2H), 8.57 (d, J = 6.0 Hz, 2H). 13C NMR (CDCl3) δ 53.6,
59.0, 67.0, 106.2, 114.9, 117.9, 123.5, 123.9, 124.2, 125.1, 125.6, 128.0,
133.6, 149.0, 149.7, 156.1, 161.4, 163.2, 178.3. LRMS (ESI) m/z 637
(M+ + H, 100), 659 (M+ + Na, 12). HRMS (ESI) Calcd for C40H33N2O6
(M+ + H) 637.2339. Found 637.2330.
N-(Pyridin-4′-ylmethyl)-3,9-dioxa-6-azaundecane-1,11-diol (55).
This compound was obtained as a pale brown oil (3.6 g, 31%) from
54 (6.0 g, 31.1 mmol), 4-(chloromethyl)pyridine hydrochloride (6.6 g,
40.2 mmol), K2CO3 (11.2 g, 81.2 mmol), and acetonitrile (70 mL)
according to the general procedure I described above. 1H NMR
(CDCl3) δ 2.75 (t, J = 4.8 Hz, 4H), 3.55 (t, J = 4.8 Hz, 4H), 3.61 (t, J =
4.8 Hz, 4H), 3.71 (t, J = 4.8 Hz, 4H), 3.72 (s, 2H), 4.20 (br, 2H), 7.34 (d,
J = 6.0 Hz, 2H), 8.56 (d, J = 6.0 Hz, 2H). 13C NMR (CDCl3) δ 54.7, 58.7,
61.6, 68.7, 72.5, 124.0, 147.8, 149.7. LRMS (ESI) m/z 285 (M+ + H,
100), 307 (M+ + Na, 60). HRMS (ESI) Calcd for C14H24N2O4Na (M+ +
Na) 307.1634. Found 307.1635.
1,13-Bis[3′-(4H-chromen-4-on-2-yl)phenyl]-7-(4-pyridylmethyl)-
1,4,10,13-tetraoxa-7-azatridecane (56). This compound was obtained
as a white foam (0.25 g, 35%) from 55 (0.28 g, 0.99 mmol), 3′-
hydroxyflavone (0.48 g, 2.02 mmol), triphenylphosphine (0.54 g, 2.06
mmol), THF (20 mL), and DIAD (0.42 g, 2.08 mmol) according to the
general procedure II described above. 1H NMR (CDCl3) δ 2.87 (t, J =
5.6 Hz, 4H), 3.70 (t, J = 5.6 Hz, 4H), 3.82 (t, J = 4.4 Hz, 4H), 3.83 (s,
2H), 4.17 (t, J = 4.4 Hz, 4H), 6.78 (s, 2H), 7.05 (dd, J = 2.4, 8.0 Hz, 2H),
7.33 (d, J = 5.2 Hz, 2H), 7.37 − 7.44 (m, 6H), 7.49 (d, J = 8.0 Hz, 2H),
7.55 (d, J = 8.0 Hz, 2H), 7.69 (dd, J = 8.4, 8.4 Hz, 2H), 8.22 (dd, J = 1.2,
7.6 Hz, 2H), 8.50 (d, J = 5.6 Hz, 2H). 13C NMR (CDCl3) δ 54.2, 58.8,
67.7, 69.5, 70.2, 107.8, 112.5, 117.7, 118.1, 118.9, 123.6, 124.0, 125.7,
130.1, 133.1, 133.8, 149.6, 156.2, 159.2, 163.1, 178.3. LRMS (ESI) m/z
725 (M+ + H, 100), 747 (M+ + Na, 35). HRMS (ESI) Calcd for
C44H41N2O8 (M+ + H) 725.2863. Found 725.2842.
(M+ + H, 100), 747 (M+ + Na, 18). HRMS (ESI) Calcd for C44H41N2O8
(M+ + H) 725.2863. Found 725.2849.
1,13-Bis[2-phenyl-4H-chromen-4-on-3-yl]-7-(4-pyridylmethyl)-
1,4,10,13-tetraoxa-7-azatridecane (58). This compound was obtained
as a white foam (0.23 g, 32%) from 55 (0.28 g, 0.99 mmol), 3-
hydroxyflavone (0.48 g, 2.02 mmol), triphenylphosphine (0.54 g, 2.06
mmol), THF (20 mL), and DIAD (0.42 g, 2.08 mmol) according to the
general procedure II described above. 1H NMR (CDCl3) δ 2.60 (t, J =
5.6 Hz, 4H), 3.40 (t, J = 5.6 Hz, 4H), 3.61 (s, 2H), 3.61 (t, J = 4.8 Hz,
4H), 4.24 (t, J = 4.8 Hz, 4H), 7.20 (d, J = 6.0 Hz, 2H), 7.33 (dd, J = 5.6,
8.0 Hz, 2H), 7.39−7.42 (m, 6H), 7.48 (d, J = 8.0 Hz, 2H), 7.62 (dd, J =
5.6, 8.0 Hz, 2H), 8.09−8.12 (m, 4H), 8.20 (dd, J = 1.2, 8.0 Hz, 2H), 8.43
(d, J = 8.0 Hz, 2H). 13C NMR (CDCl3) δ 54.0, 58.6, 69.6, 70.2, 71.4,
118.0, 123.5, 124.1, 124.6, 125.7, 128.3, 128.7, 130.6, 130.9, 133.4, 140.4,
149.5, 149.5, 155.2, 155.4, 175.0. LRMS (ESI) m/z 725 (M+ + H, 100),
747 (M+ + Na, 45). HRMS (ESI) Calcd for C44H41N2O8 (M+ + H)
725.2863. Found 725.2890.
1,13-Bis[4′-(4H-chromen-4-on-2-yl)-2-methoxyphenyl]-7-(4-pyri-
dylmethyl)-1,4,10,13-tetraoxa-7-azatridecane (59). This compound
was obtained as a white foam (0.26 g, 23%) from 55 (0.42 g, 1.48 mmol),
3′-methoxy-4′-hydroxyflavone (0.80 g, 2.99 mmol), triphenylphosphine
(0.82 g, 3.13 mmol), THF (20 mL), and DIAD (0.62 g, 3.07 mmol)
according to the general procedure II described above. 1H NMR
(CDCl3) δ 2.78 (t, J = 5.6 Hz, 4H), 3.64 (t, J = 5.6 Hz, 4H), 3.74 (s, 2H),
3.80 (t, J = 4.8 Hz, 4H), 3.88 (s, 6H), 4.17 (t, J = 4.8 Hz, 4H), 6.68 (s,
2H), 6.95 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 6.0 Hz, 2H), 7.31−7.37 (m,
4H), 7.44−7.51 (m, 4H), 7.64 (dd, J = 3.2, 8.4 Hz, 2H), 8.15 (d, J = 8.0
Hz, 2H), 8.46 (d, J = 4.4 Hz, 2H). 13C NMR (CDCl3) δ 54.1, 56.0, 58.7,
68.5, 69.3, 70.2, 106.4, 109.3, 112.9, 117.9, 119.8, 123.5, 123.8, 124.5,
125.1, 125.5, 133.6, 149.5, 149.6, 151.4, 156.1, 163.2, 178.2. LRMS
(ESI) m/z 785 (M+ + H, 65), 807 (M+ + Na, 100). HRMS (ESI) Calcd
for C46H44N2O10Na (M+ + Na) 807.2894. Found 807.2899.
1,13-Bis[4′-(3-methoxy-4H-chromen-4-on-2-yl)phenyl]-7-(4-pyri-
dylmethyl)-1,4,10,13-tetraoxa-7-azatridecane (60). This compound
was obtained as a white foam (0.18 g, 26%) from 55 (0.25 g, 0.88 mmol),
3-methoxy-4′-hydroxyflavone (0.48 g, 1.79 mmol), triphenylphosphine
(0.50 g, 1.91 mmol), THF (20 mL), and DIAD (0.38 g, 1.88 mmol)
according to the general procedure II described above. 1H NMR
(CDCl3) δ 2.84 (t, J = 5.6 Hz, 4H), 3.67 (t, J = 5.6 Hz, 4H), 3.79 (s, 2H),
3.82 (t, J = 4.8 Hz, 4H), 3.88 (s, 6H), 4.16 (t, J = 4.8 Hz, 4H), 7.02 (d, J =
7.2 Hz, 4H), 7.33 (d, J = 4.8 Hz, 2H), 7.36 (dd, J = 3.2, 7.6 Hz, 2H), 7.51
(d, J = 7.6 Hz, 2H), 7.65(dd, J = 3.2, 7.6 Hz, 2H), 8.10 (d, J = 7.2 Hz,
4H), 8.24 (dd, J = 1.2, 7.2 Hz, 2H), 8.51(br, 2H). 13C NMR (CDCl3) δ
54.2, 58.8, 59.9, 67.5, 69.4, 70.2, 114.5, 117.9, 123.4, 123.6, 124.2, 124.6,
125.7, 130.2, 133.3, 140.8, 149.5, 149.6, 155.1, 155.4, 160.7, 174.9.
LRMS (ESI) m/z 785 (M+ + H, 100), 807 (M+ + Na, 40). HRMS (ESI)
Calcd for C46H45N2O10 (M+ + H) 785.3074. Found 785.3063.
1,13-Bis[4′-(6-fluoro-4H-chromen-4-on-2-yl)phenyl]-7-(4-pyridyl-
methyl)-1,4,10,13-tetraoxa-7-azatridecane (61). This compound was
obtained as a white foam (0.13 g, 12%) from 55 (0.42 g, 1.48 mmol), 6-
fluoro-4′-hydroxyflavone (0.77 g, 3.01 mmol), triphenylphosphine
(0.82 g, 3.13 mmol), THF (20 mL), and DIAD (0.62 g, 3.07 mmol)
according to the general procedure II described above. 1H NMR
(CDCl3) δ 2.83 (t, J = 6.0 Hz, 4H), 3.66 (t, J = 6.0 Hz, 4H), 3.78 (s, 2H),
3.80 (t, J = 4.8 Hz, 4H), 4.14 (t, J = 4.8 Hz, 4H), 6.67 (s, 2H), 6.98 (d, J =
8.8 Hz, 4H), 7.32 (d, J = 5.6 Hz, 2H), 7.38 (dd, J = 3.2, 7.6 Hz, 2H), 7.38
(dd, J = 4.4, 9.2 Hz, 2H), 7.81(m, 6H), 8.49 (d, J = 5.6 Hz, 2H). 13C
NMR (CDCl3) δ 54.3, 58.8, 67.7, 69.3, 70.2, 105.4, 110.4, 110.6, 115.0,
120.0, 120.0, 121.5, 121.8, 123.5, 123.8, 125.0, 125.1, 128.0, 149.5, 149.6,
152.3, 158.3, 160.7, 161.7, 163.5, 177.4. LRMS (ESI) m/z 761 (M+ + H,
100), 783 (M+ + Na, 30). HRMS (ESI) Calcd for C44H39N2O8F (M+ +
H) 761.2674. Found 761.2659.
1,13-Bis[2′-(4H-chromen-4-on-2-yl)phenyl]-7-(4-pyridylmethyl)-
1,4,10,13-tetraoxa-7-azatridecane (57). This compound was obtained
as a white foam (0.21 g, 29%) from 55 (0.28 g, 0.99 mmol), 2′-
hydroxyflavone (0.48 g, 2.02 mmol), triphenylphosphine (0.54 g, 2.06
mmol), THF (20 mL), and DIAD (0.42 g, 2.08 mmol) according to the
general procedure II described above. 1H NMR (CDCl3) δ 2.77 (t, J =
5.6 Hz, 4H), 3.60 (t, J = 5.6 Hz, 4H), 3.69 (s, 2H), 3.77 (t, J = 4.8 Hz,
4H), 4.17 (t, J = 4.8 Hz, 4H), 7.00 (d, J = 8.4 Hz, 2H), 7.08 (dd, J = 7.2,
8.0 Hz, 2H), 7.13 (s, 2H), 7.20 (d, J = 5.6 Hz, 2H), 7.36 (dd, J = 7.2, 8.0
Hz, 2H), 7.41 (dd, J = 7.2, 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.64
(dd, J = 7.2, 8.0 Hz, 2H), 7.87 (d, J = 8.0 Hz, 2H), 8.19 (d, J = 7.2 Hz,
2H), 8.35 (d, J = 8.0 Hz, 2H). 13C NMR (CDCl3) δ 54.1, 58.5, 68.4, 69.2,
70.2, 112.7, 113.0, 118.0, 121.0, 121.2, 123.5, 123.8, 124.8, 125.5, 129.3,
132.3, 133.5, 149.4, 156.4, 157.2, 160.8, 178.6. LRMS (ESI) m/z 725
N-(Pyridin-3′-ylmethyl)-3,9-dioxa-6-azaundecane-1,11-diol (62).
This compound was obtained as a pale brown oil (1.1 g, 36%) from
54 (2.0 g, 10.4 mmol), 3-(bromomethyl)pyridine hydrobromide (2.7 g,
10.7 mmol), K2CO3 (3.1 g, 22.5 mmol), and acetone (40 mL) according
to the general procedure I described above. 1H NMR (CDCl3) δ 2.74 (t,
J = 5.38 Hz, 4 H), 3.52−3.61 (m, 8 H), 3.67−3.74 (m, 6 H), 4.26 (br, 2
H), 7.26−7.30 (m, 1 H), 7.75−7.79 (m, 1 H), 8.49−8.54 (m, 2 H). 13C
NMR (CDCl3) δ 54.4, 56.8, 61.6, 68.7, 72.5, 123.4, 133.7, 137.0, 148.7,
8899
dx.doi.org/10.1021/jm301172v | J. Med. Chem. 2012, 55, 8891−8902