ACS Medicinal Chemistry Letters
Letter
Chadwick, J.; Hemingway, J.; Delves, M. J.; Sinden, R. E.; Zeeman, A.
M.; Kocken, C. H.; Berry, N. G.; O'Neill, P. M.; Ward, S. A.
Generation of quinolone antimalarials targeting the Plasmodium
falciparum mitochondrial respiratory chain for the treatment and
prophylaxis of malaria. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 8298−
8303.
(7) Vaidya, A. B. Mitochondrial and plastid functions as antimalarial
drug targets. Curr. Drug Targets Infect. Disord. 2004, 4, 11−23.
(8) Baggish, A. L.; Hill, D. R. Antiparasitic agent atovaquone.
Antimicrob. Agents Chemother. 2002, 46, 1163−1173.
quinone, a definitive increase in inhibitory activity was
observed.
Future investigations will continue to examine the effect of
rigidity and planarity on activity. In addition, analogues
possessing nitrogen-based cations will be evaluated as
antiparasitic agents. Preliminary studies have revealed that the
pyridinium (41) and imidazolium (42) derivatives of quinone
28c demonstrate weaker antiplasmodial activity than their
phosphonium counterpart (Figure 4). Although the initial
(9) Rodrigues, T.; Lopes, F.; Moreira, R. Inhibitors of the
mitochondrial electron transport chain and de novo pyrimidine
biosynthesis as antimalarials: The present status. Curr. Med. Chem.
2010, 17, 929−956.
(10) Long, T. E.; Lu, X.; Galizzi, M.; Docampo, R.; Gut, J.;
Rosenthal, P. J. Phosphonium lipocations as antiparasitic agents.
Bioorg. Med. Chem. Lett. 2012, 22, 2976−2979.
(11) Smith, R. A.; Hartley, R. C.; Cocheme, H. M.; Murphy, M. P.
Mitochondrial pharmacology. Trends Pharmacol. Sci. 2012, 33, 341−
352.
(12) Porter, T. H.; Folkers, K. Antimetabolites of coenzyme Q. Their
potential application as antimalarials. Angew. Chem., Int. Ed. Engl. 1974,
13, 559−569.
Figure 4. Antiplasmodial activity comparisons of pyridinium and
imidazolium analogues of triphenylphosphonium cation 28c against P.
falciparum W2.
(13) Kessl, J. J.; Hill, P.; Lange, B. B.; Meshnick, S. R.; Meunier, B.;
Trumpower, B. L. Molecular basis for atovaquone resistance in
Pneumocystis jirovecii modeled in the cytochrome bc(1) complex of
Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279, 2817−2824.
(14) Anderson, J. M.; Kochi, J. K. Silver(I)-catalyzed oxidative
decarboxylation of acids by peroxydisulfate - Role of silver(II). J. Am.
Chem. Soc. 1970, 92, 1651−1659.
results have shown them to be several fold less active, cationic
inhibitors containing a quaternary amine may possess better
pharmaceutical properties and ultimately prove to have greater
in vivo efficacy than the phosphonium analogues.
ASSOCIATED CONTENT
* Supporting Information
Synthetic procedures and characterization data of reported
compounds. This material is available free of charge via the
(15) Commandeur, C.; Chalumeau, C.; Dessolin, J.; Laguerre, M.
Study of radical decarboxylation toward functionalization of
naphthoquinones. Eur. J. Org. Chem. 2007, 3045−3052.
(16) Madej, M. G.; Nasiri, H. R.; Hilgendorff, N. S.; Schwalbe, H.;
Unden, G.; Lancaster, C. R. D. Experimental evidence for proton
motive force-dependent catalysis by the diheme-containing succinate:
Menaquinone oxidoreductase from the Gram-positive bacterium
Bacillus licheniformis. Biochemistry 2006, 45, 15049−15055.
(17) Wu, C. M.; Johnson, R. K.; Mattern, M. R.; Wong, J. C.;
Kingston, D. G. I. Synthesis of furanonaphthoquinones with
hydroxyamino side chains. J. Nat. Prod. 1999, 62, 963−968.
(18) Glinis, E.; Malamidou-Xenikaki, E.; Skouros, H.; Spyroudis, S.;
Tsanakopoulou, M. Arylation of lawsone through BF3-mediated
coupling of its phenyliodonium ylide with activated arenes and
aromatic aldehydes. Tetrahedron 2010, 66, 5786−5792.
(19) Coteron, J. M.; Catterick, D.; Castro, J.; Chaparro, M. J.; Diaz,
B.; Fernandez, E.; Ferrer, S.; Gamo, F. J.; Gordo, M.; Gut, J.; de las
Heras, L.; Legac, J.; Marco, M.; Miguel, J.; Munoz, V.; Porras, E.; de la
Rosa, J. C.; Ruiz, J. R.; Sandoval, E.; Ventosa, P.; Rosenthal, P. J.;
Fiandor, J. M. Falcipain inhibitors: Optimization studies of the 2-
pyrimidinecarbonitrile lead series. J. Med. Chem. 2010, 53, 6129−6152.
(20) Zaugg, H. E.; Rapala, R. T.; Leffler, M. T. Naphthoquinone
antimalarials. 14. 2-Hydroxy-3-aryl-1,4-naphthoquinones. J. Am. Chem.
Soc. 1948, 70, 3224−3228.
(21) Ball, E. B. Studies on oxidation-reduction. XXI. Phthiocol, the
pigment of the human tubercle bacillus. J. Biol. Chem. 1934, 106, 515−
524.
(22) Singh, I.; Ogata, R. T.; Moore, R. E.; Chang, C. W. J.; Scheuer,
P. J. Electronic spectra of substituted naphthoquinones. Tetrahedron
1968, 24, 6053−6073.
(23) Juster, N. J. Color and chemical constitution. J. Chem. Educ.
1962, 39, 596−601.
(24) Lu, X.; Althawari, A.; Hansen, E. N.; Long, T. E. Phase-transfer
catalysts in the O-alkylation of 2-hydroxynapthoquinones. Synthesis,
2012, 44, in press.
■
S
AUTHOR INFORMATION
Corresponding Author
*Tel: +1-706-542-8597. Fax: +1-706-542-5358. E-mail: tlong@
■
Funding
Financial support was generously provided by the R. C. Wilson
Pharmacy Fund from the College of Pharmacy at The
University of Georgia to T.E.L., the National Institutes of
Health to P.J.R., and the Doris Duke Charitable Foundation,
with which P.J.R. is a Distinguished Clinical Scientist.
Notes
The authors declare no competing financial interest.
REFERENCES
■
(1) Greenwood, B. M.; Bojang, K.; Whitty, C. J.; Targett, G. A.
Malaria. Lancet 2005, 365, 1487−98.
(2) Snow, R. W.; Guerra, C. A.; Noor, A. M.; Myint, H. Y.; Hay, S. I.
The global distribution of clinical episodes of Plasmodium falciparum
malaria. Nature 2005, 434, 214−7.
(3) The malERA Consultative Group on Drugs. A research agenda
for malaria eradication: Drugs. PLoS Med. 2011, 8, e1000402.
(4) Fidock, D. A. Drug discovery: Priming the antimalarial pipeline.
Nature 2010, 465, 297−298.
(5) Greenwood, B. Anti-malarial drugs and the prevention of malaria
in the population of malaria endemic areas. Malar. J. 2010, 9 (Suppl.
3), S2.
(6) Biagini, G. A.; Fisher, N.; Shone, A. E.; Mubaraki, M. A.;
Srivastava, A.; Hill, A.; Antoine, T.; Warman, A. J.; Davies, J.;
Pidathala, C.; Amewu, R. K.; Leung, S. C.; Sharma, R.; Gibbons, P.;
Hong, D. W.; Pacorel, B.; Lawrenson, A. S.; Charoensutthivarakul, S.;
Taylor, L.; Berger, O.; Mbekeani, A.; Stocks, P. A.; Nixon, G. L.;
1033
dx.doi.org/10.1021/ml300242v | ACS Med. Chem. Lett. 2012, 3, 1029−1033