47.1, 55.2, 61.3, 113.8, 128.1, 135.4, 158.9. Other analytical
data is the same as that reported in literature.26
References
1 (a) T. Minami, H. Okamoto, S. Ikeda, R. Tanaka, F. Ozawa and
M. Yoshifuji, Angew. Chem., Int. Ed., 2001, 40, 4501–4503;
(b) F. Ozawa, H. Okamoto, S. Kawagishi, S. Yamamoto, T. Minami and
M. Yoshifuji, J. Am. Chem. Soc., 2002, 124, 10968–10969;
(c) A. S. Gajare, K. Toyota, M. Yoshifuji and F. Ozawa, J. Org. Chem.,
2004, 69, 6504–6506; (d) S. Pérez, C. López, R. Bosque, X. Solans,
M. Font-Bardía, A. Roig, E. Molins, P. W. N. M. van Leeuwen,
G. P. F. van Strijdonck and Z. Freixa, Organometallics, 2008, 27, 4288–
4299; (e) H. Tsuji, H. Takahashi and M. Morikawa, Tetrahedron Lett.,
1965, 4387–4388.
2 (a) B. M. Trost and P. E. Strege, Tetrahedron Lett., 1974, 19, 2603–2606;
(b) D. N. Jones and S. D. Knox, J. Chem. Soc., Chem. Commun., 1975,
165–166; (c) B. M. Trost, P. E. Strege, L. Weber, T. J. Fullerton and
T. J. Dietsche, J. Am. Chem. Soc., 1978, 100, 3407–3415;
(d) B. M. Trost, L. Weber, P. E. Strege, T. J. Fullerton and T. J. Dietsche,
J. Am. Chem. Soc., 1978, 100, 3416–3426; (e) B. M. Trost and
T. R. Verhoeven, J. Am. Chem. Soc., 1978, 100, 3435–3443.
(R)-N-Trifluroacetyl-2-(4-methoxyphenyl)piperidine (11)
To a solution of 16 (16 mg, 0.084 mmol) in dry CH2Cl2 (8 mL)
was added dry Et3N (24 μL, 0.168 mmol, 2.0 equiv) at room
temperature and stirred for 10 min. Trifluoroacetic anhydride
(18 μL, 0.126 mmol, 1.5 equiv) was added at 0 °C and the
mixture stirred for 2 h at room temperature. The solvent was
removed under reduced pressure and the residue purified by
column chromatography using petroleum ether–EtOAc (9 : 1) as
eluent to give 11 (24 mg, quantitative) as colorless oil. IR
(CHCl3): νmax = 3020, 2939, 2862, 1683, 1515, 1462, 1155,
1086, 1034, 669 cm−1
.
1H NMR (400 MHz, CDCl3):
3 (a) Z. Wang, X. Lu, A. Lei and Z. Zhang, J. Org. Chem., 1998, 63,
3806–3807; (b) N. Chatani, N. Amishiro and S. Murai, J. Am. Chem.
Soc., 1991, 113, 7778–7780.
4 J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles
and Applications of Organotransition Metal Chemistry, University
Science Books, Mill Valley, 1987, p. 417.
5 S. A. Godleski, in Comprehensive Organic Synthesis, ed. B. M. Trost and
I. Fleming, Pergamon Press, New York, 1991, vol. 4, Ch. 3.3.
6 P. J. Harrington, in Comprehensive Organometallic Chemistry II, ed.
E. W. Abel, F. Gordon, A. Stone, G. Wilkinson and R. J. Puddephatt,
Elsevier, New York, 1995, vol. 12, p. 797.
(2 : 1 mixture of rotamers, *for the minor rotamer, the data was
compared with the phenyl analog known in the literature)23c δ =
1.54–1.74 (m, 4H + 4H*), 1.89–1.98 (m, 1H + 1H*), 2.42 (d,
J = 14.4 Hz, 1H), 2.49 (d, J = 14.4 Hz, 1H*), 2.72 (t, J = 12.3 Hz,
1H*), 3.08 (dt, J = 12.3, 2.7 Hz, 1H), 3.81 (s, 3H), 3.82 (s,
3H*), 3.81–3.84 (m, 1H), 4.39 (d, J = 13.3 Hz, 1H*), 5.23 (br s,
1H*), 5.84 (d, J = 4.6 Hz, 1H), 6.90–6.93 (m, 2H + 2H*),
7.12–7.16 (m, 2H + 2H*). 13C NMR (100 MHz, CDCl3): (*for
the minor rotamer) δ = 19.1*, 19.3, 25.5*, 26.2*, 26.9, 28.4,
29.7*, 39.6*, 42.1, 55.2*, 55.3, 114.3, 114.34*, 127.5, 127.8,
128.9*, 129.2, 158.6, 158.8*. HRMS (ESI-TOF) calcd for
[C14H16F3NO2 + H]+ 288.1211, found 288.1201.
7 J.-E. Bäckvall, Metal-catalyzed Cross Coupling Reactions, VCH,
Weinheim, 1998, p. 339.
8 B. M. Trost, Acc. Chem. Res., 1980, 13, 385–393.
9 (a) H. Nakamura, J.-G. Shim and Y. Yamamoto, J. Am. Chem. Soc.,
1997, 119, 8113–8114; (b) J. Kiji, K. Yamamoto, H. Tomita and
J. Furukawa, J. Chem. Soc., Chem. Commun., 1974, 506–507;
(c) K. Ohno, T. Mitsuyasu and J. Tsuji, Tetrahedron, 1972, 28, 3705–
3720; (d) H. Nakamura, H. Iwama and Y. Yamamoto, J. Am. Chem. Soc.,
1996, 118, 6641–6647; (e) H. Nakamura, N. Asao and Y. Yamamoto,
J. Chem. Soc., Chem. Commun., 1995, 1273–1274; (f) K. J. Zabó,
Chem.–Eur. J., 2000, 6, 4413–4421.
10 H. Nakamura, K. Nakamura and Y. Yamamoto, J. Am. Chem. Soc., 1998,
120, 4242–4243.
11 K. Nakamura, H. Nakamura and Y. Yamamoto, J. Org. Chem., 1999, 64,
2614–2615.
12 (a) R. A. Fernandes, A. Stimac and Y. Yamamoto, J. Am. Chem. Soc.,
2003, 125, 14133–14139; (b) R. A. Fernandes and Y. Yamamoto, J. Org.
Chem., 2004, 69, 735–738; (c) R. A. Fernandes and Y. Yamamoto,
J. Org. Chem., 2004, 69, 3562–3564.
13 (a) R. O. Duthaler, Tetrahedron, 1994, 50, 1539–1650; (b) M. Liu and
M. P. Sibi, Tetrahedron, 2002, 58, 7991–8035; (c) J. A. Ma, Angew.
Chem., Int. Ed., 2003, 42, 4290–4299.
14 For recent reviews on allylmetal additions, see: (a) C. O. Puentes and
V. Kouznetsov, J. Heterocycl. Chem., 2002, 39, 595–614;
(b) S. E. Denmark and N. G. Almstead, in Modern Carbonyl Chemistry,
ed. J. Otera, Wiley-VHC, Weinheim, Germany, 2000, Ch. 10;
(c) S. R. Chemler and R. W. Roush, in Modern Carbonyl Chemistry, ed.
J. Otera, Wiley-VHC, Weinheim, Germany, 2000, Ch. 11;
(d) S. Kobayashi and H. Ishitani, Chem. Rev., 1999, 99, 1069–1094;
(e) R. Bloch, Chem. Rev., 1998, 98, 1407–1438; (f) D. Enders and
U. Reinhold, Tetrahedron: Asymmetry, 1997, 8, 1895–1946;
(g) Y. Yamamoto and N. Asao, Chem. Rev., 1993, 93, 2207–2293.
15 For leading references on asymmetric allylation of imines see:
(a) N. Momiyama, H. Nishimoto and M. Terada, Org. Lett., 2011, 13,
2126–2129; (b) J. Li, M. Lutz, A. L. Spek, G. P. M. van Klink,
G. van Koten and R. J. M. Klein Gebbink, Organometallics, 2010, 29,
1379–1387; (c) X.-C. Qiao, S.-F. Zhu, W.-Q. Chen and Q.-L. Zhou,
Tetrahedron: Asymmetry, 2010, 21, 1216–1220; (d) X. Li, X. Liu,
Y. Fu, L. Wang, L. Zhou and X. Feng, Chem.–Eur. J., 2008, 14,
4796–4798; (e) T. Gastner, H. Ishitani, R. Akiyama and S. Kobayashi,
Angew. Chem., Int. Ed., 2001, 40, 1896–1898; (f) X. Fang,
M. Johannsen, S. Yao, N. Gathergood, R. G. Hazell and
K. A. Jorgensen, J. Org. Chem., 1999, 64, 4844–4849; (g) D. Ferraris,
T. Dudding, B. Young, W. J. Drury III and T. Lectka, J. Org. Chem.,
1999, 64, 2168–2169.
(R)-Pipecolic acid (12)23
To a solution of 11 (12 mg, 0.042 mmol) in CCl4 (2 mL),
CH3CN (2 mL) and H2O (4 mL) were added sequentially NaIO4
(134.8 mg, 0.630 mmol, 15 equiv) and RuCl3·3H2O (0.6 mg,
0.0023 mmol, 5.5 mol%) under vigorous stirring. After 96 h, the
reaction mixture was diluted with CH2Cl2 (20 mL) and filtered
through a pad of celite and washed with CH2Cl2. The filtrate was
dried (Na2SO4) and concentrated. The residue was dissolved in
MeOH and K2CO3 (34 mg, 0.246 mmol) was added. The hetero-
geneous mixture was stirred for 48 h and then concentrated. The
residue was dissolved in HCl (1.2 N, 2 mL) and purified by ion
exchange chromatography (Dowex 50WX8-200, 100–200 mesh).
The HCl solution of the crude product was eluted with H2O
(10 mL), then 1.5% aq. NH4OH (10 mL), 3% aq. NH4OH
(10 mL) and finally 5% aq. NH4OH (10 mL) solution. The nin-
hydrin containing fractions were concentrated under reduced
pressure to afford 12, (R)-pipecolic acid (2.8 mg, 52%) as pale
yellow solid. M.p. 268–270 °C. [α]2D5 = +26.2 (c = 0.5, H2O),
1
lit.23b +26.7 (c = 1.0, H2O). H NMR (400 MHz, D2O): δ =
1.53–1.69 (m, 3H), 1.82–1.89 (m, 2H), 2.18 (dd, J = 9.8,
4.3 Hz, 1H), 2.95 (td, J = 12.3, 3.1 Hz, 1H), 3.40 (dd, J = 16.5,
3.5 Hz, 1H), 3.54 (dd, J = 11.4, 3.3 Hz, 1H). 13C NMR
(100 MHz, D2O): δ = 23.0, 23.3, 28.0, 45.1, 60.5, 176.1. Other
analytical data is the same as that reported in the literature.23b
Acknowledgements
We thank the Council of Scientific and Industrial Research
(CSIR) New Delhi for financial support [Grant No. 01(2267)/08/
EMR-II] and Junior Research Fellowship to J. L. Nallasivam.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 7789–7800 | 7799