Job/Unit: I20307
/KAP1
Date: 12-07-12 16:06:35
Pages: 8
N. Singh et al.
FULL PAPER
[5] A. T. Coomber, D. Beljonne, R. H. Friend, J. L. Bredas, A.
Charlton, N. Robertson, A. E. Underhill, M. Kurmoo, P. Day,
Nature 1996, 380, 144–146.
gen atoms could not be located. In 3, some atoms in the cyclobutyl
ring showed high thermal motion, and disordered models were in-
vestigated. One model was chosen in which one atom was disor-
dered over two sites with occupation factors x and 1 – x with x
refining to 0.54(2). Four solvent water molecules were located in 4
and refined with reduced occupancies. The hydrogen atoms could
not be located. Diagrams for all complexes were prepared using
ORTEP.[42] CCDC-803645 (for 1), -870133 (for 2), -803643 (for 3)
and -881935 (for 4) contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.
ac.uk/data_request/cif.
[6] N. Robertson, L. Cronin, Coord. Chem. Rev. 2002, 227, 93–
127.
[7] S. Rabaça, M. Almeida, Coord. Chem. Rev. 2010, 254, 1493–
1508.
[8] J. Cookson, P. D. Beer, Dalton Trans. 2007, 1459–1472.
[9] G. Hogarth, Prog. Inorg. Chem. 2005, 53, 71–561.
[10] K. Oliver, A. J. P. White, G. Hogarth, J. D. E. T. Wilton-Ely,
Dalton Trans. 2011, 40, 5852–5864.
[11] K. Diwan, B. Singh, S. K. Singh, M. G. B. Drew, N. Singh,
Dalton Trans. 2012, 41, 367–369.
[12] A. Kumar, R. Chauhan, K. C. Molloy, G. Kociok-Kohn, L.
Bahadur, N. Singh, Chem. Eur. J. 2010, 16, 4307–4314.
[13] C. Bianchini, C. A. Ghilardi, A. Meli, S. Midollini, A. Orland-
ini, Inorg. Chem. 1985, 24, 932–939.
Crystal Data for 1: C46H42CuO2.50P2S2, formula mass 824.40, tri-
¯
clinic space group P1, a = 12.3315(14), b = 13.0377(11), c =
15.0501(16) Å, α = 92.123(8), β = 92.225(9), γ = 115.574(10)°, V =
2177.1(4) Å3, Z = 2, dcalcd. = 1.258 gcm–3, F(000) = 858, reflections
collected 11173, independent reflections 6720, final indices
[14] M. Afzal, C. L. Rosenberg, M. A. Malik, A. J. P. White, P.
O’Brien, New J. Chem. 2011, 35, 2773–2780.
[15] L. I. Victoriano, H. B. Cortes, J. Coord. Chem. 1996, 39, 231–
[IϾ2σ(I)] R1 = 0.0640, wR2 = 0.1639, R indices (all data) R1
0.1064, wR2 = 0.1833, GOF 1.038.
=
239.
[16] L. Z. Xu, J. H. Lin, S. S. Zhang, K. Jiao, F. F. Jian, Pol. J.
Chem. 2001, 75, 755.
Crystal Data for 2: C44H37CuOP2S2, formula mass 771.34, mono-
clinic space group P21/c, a = 10.9581(3), b = 19.8423(4), c =
[17] C. Bianchini, C. A. Ghilardi, A. Meli, S. Midollini, A. Orland-
ini, J. Organomet. Chem. 1983, 255, C27–C30.
[18] T. Shono, Y. Fuji, K. Shinra, Chem. Lett. 1972, 163–164.
[19] C. Kowala, J. M. Swan, Aust. J. Chem. 1966, 19, 555–559.
[20] I. Haiduc, R. Cea-Olivares, R. A. Toscano, C. Silvestru, Poly-
hedron 1995, 14, 1067–1071.
[21] L. M. Nguyen, M. E. Dellinger, J. T. Lee, R. A. Quinlan, A. L.
Rheingold, R. D. Pike, Inorg. Chim. Acta 2005, 358, 1331–
1336.
[22] a) A. Tsuboyama, K. Kuge, M. Furugori, S. Okada, M. Hosh-
ino, K. Ueno, Inorg. Chem. 2007, 46, 1992–2001; b) R. Czerwi-
enic, J. Yu, H. Yersin, Inorg. Chem. 2011, 50, 8293–8301.
[23] C. A. Bignozzi, R. Argazzi, C. Kleverlaan, J. Chem. Soc. Rev.
2000, 29, 87–96.
[24] E. S. Smirnova, A. A. Milikhova, V. V. Gurzhiy, D. V. Krup-
enya, I. O. Koshevoy, S. P. Tunik, Z. Anorg. Allg. Chem. 2012,
638, 415–422.
[25] C. Kutal, Coord. Chem. Rev. 1990, 99, 213–252.
[26] a) D. G. Cutell, S. Kuang, P. E. Fanwick, D. R. McMillin,
R. A. Walton, J. Am. Chem. Soc. 2002, 124, 6–7; b) S. Kuang,
D. G. Cutell, D. R. McMillin, P. E. Fanwick, R. A. Walton, In-
org. Chem. 2002, 41, 3313–3322.
[27] P. Aslanidis, P. J. Cox, S. Divanidis, A. C. Tsipis, Inorg. Chem.
2002, 41, 6875–6866.
17.7195(5) Å, β = 106.248(3)°, V = 3698.97(16) Å3, Z = 4, dcalcd.
=
1.385 gcm–3, F(000) = 1600, reflections collected 15346, indepen-
dent reflections 5226, final indices [IϾ2σ(I)] R1 = 0.0449, wR2 =
0.1222, R indices (all data) R1 = 0.0540, wR2 = 0.1327, GOF 0.978.
Crystal Data for 3: C42H39CuOP2S2, formula mass 749.33, triclinic
¯
space group P1, a = 10.3928(15), b = 13.1640(15), c = 14.4155(17)
Å, α = 92.082(9), β = 105.993(12), γ = 100.309(11)°, V = 1857.6(4)
Å3, Z = 2, dcalcd. = 1.340 gcm–3, F(000) = 780.0, reflections col-
lected 16764, independent reflections 5102, final indices [IϾ2σ(I)]
R1 = 0.0598, wR2 = 0.1786, R indices (all data) R1 = 0.0637, wR2
= 0.1835, GOF 1.056.
Crystal Data for 4: C50H47CuO2N2P2S2, formula mass 897.50, tri-
¯
clinic space group P1, a = 12.6418(12), b = 13.0045(513), c =
16.5164(718) Å, α = 109.887(10), β = 92.126(8), γ = 114.519(10)°,
V = 2272.1(4) Å3, Z = 2, dcalcd. = 1.312 gcm–3, F(000) = 936, reflec-
tions collected 19914, independent reflections 10024, final indices
[IϾ2σ(I)] R1 = 0.0894, wR2 = 0.1843, R indices (all data) R1
0.2021, wR2 = 0.2177, GOF 1.007.
=
Supporting Information (see footnote on the first page of this arti-
cle): UV/Vis spectra of ligands and crystallographic data and struc-
ture refinement parameters.
[28] H. Xu, Z. Chen, S. Ishizaka, N. Kitamura, J. Wu, Chem. Com-
mun. 2002, 1934–1935.
[29] E. Fournier, F. Lebrun, M. Drouin, A. Decken, P. D. Harvey,
Inorg. Chem. 2004, 43, 3127–3135.
[30] S. B. Harkins, J. C. Peters, J. Am. Chem. Soc. 2005, 127, 2030–
2031.
Acknowledgments
[31] Y.-G. Ma, W. H. Chan, X.-M. Zhou, C.-M. Che, New J. Chem.
1999, 23, 263; S. Sakaki, T. Kuroki, T. Hamada, J. Chem. Soc.,
Dalton Trans. 2002, 840.
[32] N. Sutin, C. Creutz, Pure Appl. Chem. 1980, 52, 2717–2738.
[33] A. Kumar, H. Meyer-Figge, W. S. Sheldrick, N. Singh, Eur. J.
Inorg. Chem. 2009, 2720–2725.
We gratefully acknowledge the Council of Scientific and Industrial
Research (CSIR), New Delhi for funding [Project no. 01(2290)/09/
EMR-II], the Banaras Hindu University for funds for the CCD
diffractometer used in the data collection of 4, the Engineering
and Physical Sciences Research Council (EPSRC) (UK) and the
University of Reading for funds for the CCD diffractometer used
in the data collection of 1, 2 and 3.
[34]
[35]
[36]
[37]
[38]
[39]
B. Singh, M. G. B. Drew, G. Kociok-Kohn, K. C. Molloy, N.
Singh, Dalton Trans. 2011, 40, 623–631.
F. Sabin, C. K. Ryu, P. C. Ford, A. Vogler, Inorg. Chem. 1992,
31, 1941–1945.
J. P. Fackler Jr., R. J. Staples, C. W. Liu, R. T. Stubbs, C. Lo-
pez, J. T. Pitts, Pure Appl. Chem. 1998, 70, 839–844.
N. Zhu, S. Du, P. Chen, X. Wu, J. Cluster Sci. 1992, 3, 201–
218.
V. Singh, A. Kumar, R. Prasad, G. Rajput, M. G. B. Drew, N.
Singh, Cryst. Eng. Commun. 2011, 13, 6817–6827.
G. G. Messmer, G. J. Palenik, Inorg. Chem. 1969, 8, 2750.
[1] D. Coucouvanis, Prog. Inorg. Chem. 1979, 26, 301–469.
[2] P. I. Clemenson, Coord. Chem. Rev. 1990, 106, 171–203.
[3] P. Cassoux, L. Valade, Inorganic Materials, John Wiley and
Sons, Chichester, 1996.
[4] M. Bousseau, L. Valade, J. P. Legros, P. Cassoux, M. Gar-
boukas, L. V. Interrante, J. Am. Chem. Soc. 1986, 108, 1908–
1916.
6
www.eurjic.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 0000, 0–0