Synthesis and Structure of New N-Bromobenzyl Bis-quinolizidine
Letters in Organic Chemistry, 2012, Vol. 9, No. 7
477
CO:NH4OH 1:1:0.5 v/v). Then half of the solvent volume
was evaporated under vacuum and 5 ml of acetone was
added. The oils obtained were dried under pressure in a des-
iccator above P2O5.
REFERENCES
[1]
Pothier, J.; Cheav, S.L.; Galand, N.; Dormeau, C.; Viel, C. A Com-
parative Study of the Effects of Sparteine, Lupanine and Lupin Ex-
tract on the Central Nervous System of the Mouse. J. Pharm.
Pharmacol., 1998, 50, 949-954.
N-o-bromobenzyl-ꢀ-isosparteinium bromide (3) Yellow
oil. Yield: 41.7%. Anal. Calcd. for C22H32N2Br2: C, 54.54;
H, 6.61; N, 5.79. Found: C, 54.48; H, 6.48; N, 5.59.
[2]
[3]
Antoun, M.D.; Taha, O.M.A. Studies on sudanese medicinal plants.
II. Evaluation of an extract of Lupinus termis seeds in chronic ec-
zema. J. Nat. Prod., 1981, 44, 179-183.
Garcia Lopez, P.M.; Garzon de la Mora, P.; Wysocka, W.; Maiz-
tegui, B.; Alzugaray, M.E.; Del Zotto, H.; Borelli, M. Quinolizidine
alkaloids isolated from Lupinus species enhance insulin secretion.
Eur. J. Pharmacol., 2004, 504, 139-142.
N-m-bromobenzyl-ꢀ-isosparteinium bromide (4) Yellow
oil. Yield: 88.8%. Anal. Calcd. for C22H32N2Br2: C, 54.54;
H, 6.61; N, 5.79. Found: C, 54.62; H, 6.65; N, 5.64.
[4]
Tsiodras, S.; Shin, R.K.; Christian, M.; Shaw, L.M.; Sass, D.A.
Anticholinergic toxicity associated with lupine seeds as a home
remedy for diabetes mellitus. Ann. Emerg. Med., 1999, 33, 715-
717.
Murakoshi, I.; Furii, Y.; Takeda, S.; Arai, J. Lupine alkaloids as
antidiabetics. Chem. Abstr., 1993, 118, 45733.
Yoshizawa, K.; In, Y.; Ishida, T.; Shioiri, T. The structural infor-
mation of the quaternary ammonium salts derived from nicotine
and sparteine in the solid state. Heterocycles 2005, 66, 667-674.
Gadepalli, R.S.V.S.; Murty, M.S.R.; Slauson, S.R.; Rimoldi, J.M.;
Fronczek, F.F. (+)-6-Benzyl-17-oxosparteine. Acta Cryst., 2003,
E59, o1832-o1834.
N-p-bromobenzyl-ꢀ-isosparteinium bromide (5) Yellow
oil. Yield: 61.5%. Anal. Calcd. for C22H32N2Br2: C, 54.54;
H, 6.61; N, 5.79. Found: C, 54.60; H, 6.72; N, 5.81.
[5]
[6]
16N-o-bromobenzyl-2-methylsparteinium bromide (6)
Yellow oil. Yield: 78.1%. Anal. Calcd. for C23H34N2Br2: C,
55.42; H, 6.83; N, 5.62. Found: C, 55.54; H, 6.78; N, 5.54.
16N-m-bromobenzyl-2-methylsparteinium bromide (7)
Yellow oil. Yield: 75.9%. Anal. Calcd. for C23H34N2Br2: C,
55.42; H, 6.83; N, 5.62. Found: C, 55.40; H, 6.81; N, 5.68.
[7]
[8]
[9]
Skolik, J.; Kruger, P.J. Correlation between the stereochemistry of
16N-p-bromobenzyl-2-methylsparteinium bromide (8)
Yellow oil. Yield: 74.8%. Anal. Calcd. for C23H34N2Br2: C,
55.42; H, 6.83; N, 5.62. Found: C, 55.46; H, 6.90; N, 5.56.
quinolizidine alkaloids and their infrared spectra from 2840-2600
ꢀ
1
cm . Tetrahedron 1968, 24, 5439-5456.
Boczon, Wꢁ. Further studies on stereochemistry of sparteine, its
isomers and derivatives. Part VII. Stereochemistry of 2-methyl- and
2-phenylsparteine and the sites of their protonation. Pol. J. Chem.,
1981, 55, 339-351.
CONCLUSION
[10]
[11]
Bohlmann, F.; Zeisberg, R. Lupinen-Alkaloide, XLI. 13C-NMR
Spektren von Lupinen-Alkaloiden. Chem. Ber., 1975, 108,
10431051.
Six new potentially biologically active compounds were
prepared with good yields using a simple alkylation reaction.
The yield of the reaction depends on the alkaloid and the
position of bromine (o-, m-, p-) in bromobenzyl bromide.
The compounds synthesized were fully characterized by
NMR and IR methods. The attachement of a bromobenzyl
substituent to the ꢀ-isosparteine skeleton does not change the
alkaloid structure, while in the 2-methylsparteine molecule,
the bromobenzyl groups at N16 induces a change in the C/D
rings positions from trans to cis.
Schneider, H.-J.; Lonsdorfer, M.; Weigand, E.F. 13C-NMR-
spektroskopische und stereochemische Untersuchungen: XI—
Konformationen von Bicyclo[3.3.1]nonanen und ihre Unterscheid-
barkeit durch lanthanideninduzierte Verschiebungen. Org. Magn.
Reson., 1976, 8, 363-367.
[12]
[13]
[14]
Duddeck, H.; Skolik, J.; Majchrzak-Kuczyꢂska, U. Tetracyclic
alkaloids of the sparteine group. 1H and 13C NMR spectroscopy and
conformational analysis. Khim. Geterosikl. Soed., 1995, 8, 1026-
1033.
Jasiewicz, B.; Boczoꢂ, W. A comparative study of sparteine, alfa-
isosparteine and 2-methylsparteine monoperchlorate salts and zinc
(II) complexes by NMR chemical shifts. J. Mol. Struct., 2005, 752,
115-123.
Jasiewicz, B.; Warꢃajtis, B.; Rychlewska, U.; Toliꢂski, T. Variety
of polymorphic forms contrasted with uniform crystal packing in
sparteine ML2 complexes: Crystal structure, spectroscopic and
magnetic properties of (-)- -isosparteine and (-)-sparteine com-
plexes with CuBr2. J. Mol. Struct., 2009, 921, 314-322.
ACKNOWLEDGEMENTS
Declared none.
CONFLICT OF INTEREST
The author(s) confirm that this article content has no con-
flicts of interest.