Communication
ChemComm
2 (a) J. M. Buriak, Chem. Rev., 2002, 102, 1271–1306; (b) T. A. Su, H. Li,
R. S. Klausen, N. T. Kim, M. Neupane, J. L. Leighton,
M. L. Steigerwald, L. Venkataraman and C. Nuckolls, Acc. Chem.
Res., 2017, 50, 1088–1095.
3 For reviews on hydrogermylation, see: (a) W. Wolfsberger, J. Prakt.
Chem., 1992, 334, 453–464; (b) A. P. Dobbs and F. K. I. Chio, Hydro-
metallation Group 4 (Si, Ge, Sn, and Pb). Comprehensive Organic
Synthesis, 2nd edn, ed. P. Kochel, Elsevier, 2014, pp. 964–998.
4 For transition metal-mediated hydrogermylations, see: (a) T. Matsuda,
S. Kadowaki, Y. Yamaguchi and M. Murakami, Org. Lett., 2010, 12,
1056–1058; (b) S. M. Rummelt, K. Radkowski, D.-A. Ros-ca and
A. Fu¨rstner, J. Am. Chem. Soc., 2015, 137, 5506–5519; (c) V. Debrauwer,
A. Turlik, L. Rummler, A. Prescimone, N. Blanchard, K. N. Houk and
V. Bizet, J. Am. Chem. Soc., 2020, 142, 11153–11164.
5 For radical-hydrogermylations, see: (a) K. Nozaki, Y. Ichinose,
K. Wakamatsu, K. Oshima and K. Utimoto, Bull. Chem. Soc. Jpn.,
1990, 63, 2268–2272; (b) S. Bernardoni, M. Lucarini, G. F. Pedulli,
L. Valgimigli, V. Gevorgyan and C. Chatgilialoglu, J. Org. Chem.,
1997, 62, 8009–8014; (c) H. Kinoshita, H. Kakiya and K. Oshima,
Bull. Chem. Soc. Jpn., 2000, 73, 2159–2160.
6 (a) C. Eaborn, R. E. E. Hill and P. Simpson, J. Organomet. Chem.,
1972, 37, 275–279; (b) W. Kitching, H. Olszowy and K. Harvey, J. Org.
Chem., 1981, 46, 2423–2424.
clean (44% yield) in this case. The last step of the catalytic cycle, i.e.
Ge–C coupling via reductive elimination (step iv), could also be
achieved from 9-Ph. Thermolysis in the presence of 3 (1 h, 160 1C)
cleanly and quantitatively afforded the Ge-arylation product 4 along
with the fluoro germane complex 7Ge. Note that heating 9-C6F5 led
to intractable mixtures, with no detectable Ge–C6F5 product, in line
with the much lower reactivity of C6F5 towards reductive elimina-
tion and the absence of catalytic coupling when using B(C6F5)3 as
Lewis acid/arylating reagent (entries 4 and 9 in Table 1).
The germane 7Ge and germyl 8Ge-BPh4 complexes were engaged
in catalytic coupling of the diphosphine fluoro germane 3 with
BPh3 (entries 13 and 14 in Table 1). Catalytic activities similar to
that achieved with Pd2(dba)3 were obtained, supporting the
proposed catalytic cycle. In addition, the cationic 8Ge and neutral
9-Ph germyl complexes were detected by 31P NMR spectroscopy
(in about 8 : 1 ratio) when monitoring the catalysis. This is con-
sistent with the fact that transmetalation and reductive elimination
require more forcing conditions than Ge–F bond activation.
In conclusion, Pd/Ni-catalyzed Germa-Suzuki coupling reac-
tions have been carried out for the first time. Fluoro germanes
were used as electrophilic coupling partners. The key Ge–F
bond cleavage was achieved thanks to phosphine-chelated
Pd/Ni - Ge–F interactions. Future work will aim to extend
further the application of Z-type coordination to the activation
and functionalization of strong s-bonds.
7 W. Xue, W. Mao, L. Zhang and M. Oestreich, Angew. Chem., Int. Ed.,
2019, 58, 6440–64433.
8 For recent reviews dealing with cross-coupling reactions from
heteroatomic electrophiles, see: (a) K. M. Korch and D. A. Watson,
¨
Chem. Rev., 2019, 119, 8192–8228; (b) S. Bahr, W. Xue and
M. Oestreich, ACS Catal., 2019, 9, 16–24.
9 H. Kameo, H. Yamamoto, K. Ikeda, T. Isasa and D. Bourissou, J. Am.
Chem. Soc., 2020, 142, 14039–14044.
10 For stoichiometric Ge–F bond cleavage via s-metathesis at Ir, see:
H. Kameo, K. Ikeda, D. Bourissou, S. Sakaki, S. Takemoto,
H. Nakazawa and H. Matsuzaka, Organometallics, 2016, 35, 713–719.
11 (a) P. Gualco, T.-P. Lin, M. Sircoglou, S. Ladeira, G. Bouhadir,
This work was supported by Grant-in-Aid for Scientific
Research (C) (No. 18K05151 and 18K05152) of the Ministry of
Education, Culture, Sports, Science and Technology (MEXT),
Japan. H. K. acknowledges the financial support from the
Tokyo Ohka Foundation for the Promotion of Science and
Technology. The Centre National de la Recherche Scientifique
¨
L. M. Perez, A. Amgoune, L. Maron, F. P. Gabbaı and
D. Bourissou, Angew. Chem., Int. Ed., 2009, 48, 9892–9895;
(b) H. Kameo, T. Kawamoto, D. Bourissou, S. Sakaki and
H. Nakazawa, Organometallics, 2015, 34, 1440–1448; (c) H. Kameo
and H. Nakazawa, Chem. Rec., 2017, 17, 268–286.
12 Competitive experiments have also been performed between 1 and 3
(ESI‡).
13 (a) A. Amgoune and D. Bourissou, Chem. Commun., 2011, 47, 859–871;
(b) H. Kameo and H. Nakazawa, Chem. – Asian J., 2013, 8, 1720–1734;
(c) G. Bouhadir and D. Bourissou, Chem. Soc. Rev., 2016, 45, 1065–1079;
´
(CNRS), the Universite Paul Sabatier (UPS), and the Agence
Nationale de la Recherche (ANR-15-CE07-0003) are acknowledged
for financial support of this work.
¨
(d) F. You and F. P. Gabbaı, Trends Chem., 2019, 1, 485–496.
14 (a) N. Kano, N. Yoshinari, Y. Shibata, M. Miyachi, T. Kawashima,
M. Enomoto, A. Okazawa, N. Kojima, J.-D. Guo and S. Nagase,
Organometalllics, 2012, 31, 8059–8062; (b) F. Hupp, M. Ma,
F. Kroll, J. O. C. Jimenez-Halla, R. D. Dewhurst, K. Radacki,
A. Stasch, C. Jones and H. Braunschweig, Chem. – Eur. J., 2014, 20,
Conflicts of interest
There are no conflicts to declare.
¨
16888–16898; (c) C. Gendy, A. Mansikkamaki, J. Valjus,
J. Heidebrecht, P. C.-Y. Hui, G. M. Bernard, H. M. Tuononen,
R. E. Wasylishen, V. K. Michaelis and R. Roesler, Angew. Chem.,
Notes and references
´
´
Int. Ed., 2019, 58, 154–158; (d) J. A. Cabeza, P. Garcıa-Alvarez,
´
´
˜
1 (a) A. C. Spivey, C.-C. Tseng, J. P. Hannah, C. J. G. Gripton, P. de
Fraine, N. J. Parr and J. J. Scicinski, Chem. Commun., 2007,
C. J. Laglera-Gandara and E. Perez-Carreno, Chem. Commun., 2020,
56, 14095–14097.
´
´
´
2926–2928; (b) Z.-T. Zhang, J.-P. Pitteloud, L. Cabrera, Y. Liang, 15 B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverrıa,
´
M. Toribio and S. Wnuk, Org. Lett., 2010, 12, 816–819; (c)
E. Cremades, F. Barragan and S. Alvarez, Dalton Trans., 2008,
J.-P. Pitteloud, Z.-T. Zhang, Y. Liang, L. Cabrera and S. F. Wnuk,
2832–2838.
J. Org. Chem., 2010, 75, 8199–8212; (d) H.-J. Song, W.-T. Jiang, 16 H. Kameo, T. Kawamoto, S. Sakaki, D. Bourissou and H. Nakazawa,
Q.-L. Zhou, M.-Y. Xu and B. Xiao, ACS Catal., 2018, 8, 9287–9291; Organometallics, 2014, 33, 6557–6567.
(e) M.-Y. Xu, W.-T. Jiang, Y. Li, Q.-H. Xu, Q.-L. Zhou, S. Yang and 17 For Lewis acid-assisted F abstraction from a Pt - Sb–F complex,
¨
B. Xiao, J. Am. Chem. Soc., 2019, 141, 7582–7588; ( f ) W.-T. Jiang,
M.-Y. Xu, S. Yang, X.-Y. Xie and B. Xiao, Angew. Chem., Int. Ed., 2020,
see: D. You, H. Yang, S. Sen and F. P. Gabbaı, J. Am. Chem. Soc.,
2018, 140, 9644–9651.
59, 20450–20454; (g) C. Fricke, A. Dahiya, W. B. Reid and 18 (a) W.-C. Shih, W. Gu, M. C. MacInnis, S. D. Timpa, N. Bhuvanesh,
F. Shoenebeck, ACS Catal., 2019, 9, 9231–9236; (h) C. Fricke,
G. J. Sherborne, I. Funes-Ardoiz, E. Senol, S. Guven and
F. Schoenebeck, Angew. Chem., Int. Ed., 2019, 58, 17788–17795;
J. Zhou and O. V. Ozerov, J. Am. Chem. Soc., 2016, 138, 2086–2089;
(b) W.-C. Shih, W. Gu, M. C. MacInnis, D. E. Herbert and
O. V. Ozerov, Organometallics, 2017, 36, 1718–1726.
¨
(i) G. J. Sherborne, A. G. Gevondian, I. Funes-Ardoiz, A. Dahiya, 19 (a) I.-S. Ke, J. S. Jones and F. P. Gabbaı, Angew. Chem., Int. Ed., 2014,
¨
C. Fricke and F. Schoenebeck, Angew. Chem., Int. Ed., 2020, 59,
15543–15548; ( j) A. Dahiya, C. Fricke and F. Schoenebeck, J. Am.
53, 2633–2637; (b) J. S. Jones, C. R. Wade and F. P. Gabbaı,
Angew. Chem., Int. Ed., 2014, 53, 8876–8879.
Chem. Soc., 2020, 142, 7754–7759; (k) A. Selmani, A. G. Gevondian 20 H. Kameo, Y. Baba, S. Sakaki, D. Bourissou, H. Nakazawa and
and F. Schoenebeck, Org. Lett., 2020, 22, 4802–4805.
H. Matsuzaka, Organometallics, 2017, 36, 2096–2106.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2021