Beilstein J. Org. Chem. 2014, 10, 2981–2988.
11.Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134,
formed under practical conditions and custom-made or
commercially available organometallic solutions can be used
directly. Highly reactive carbon nucleophiles (for example,
allyl) have been harnessed by varying the organometallic
species. Overall, this methodology is synthetically valuable for
two reasons. Firstly, a virtually limitless host of carbon nucleo-
philes may be employed via organometallic chemistry (com-
pounds 6aa–6af are novel compounds derived from unsta-
bilised carbon nucleophiles). Secondly, photoredox catalysis
can be substrate tailored through photocatalyst selection.
Having demonstrated the former reason herein, investigation of
the latter is underway to extend the substrate scope beyond
benzylic tertiary amines.
12.Kumaraswamy, G.; Murthy, A. N.; Pitchaiah, A. J. Org. Chem. 2010,
13.Jones, K. M.; Karier, P.; Klussmann, M. ChemCatChem 2012, 4,
14.Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R. Org. Lett.
15.Nobuta, T.; Tada, N.; Fujiya, A.; Kariya, A.; Miura, T.; Itoh, A. Org. Lett.
16.Möhlmann, L.; Blechert, S. Adv. Synth. Catal. 2014, 356, 2825–2829.
17.Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J.
18.Tucker, J. W.; Stephenson, C. R. J. J. Org. Chem. 2012, 77,
19.Hari, D. P.; König, B. Org. Lett. 2011, 13, 3852–3855.
Supporting Information
20.Rueping, M.; Vila, C.; Bootwicha, T. ACS Catal. 2013, 3, 1676–1680.
Supporting Information File 1
21.Hu, J.; Wang, J.; Nguyen, T. H.; Zheng, N. Beilstein J. Org. Chem.
Experimental procedures, 1H and 13C spectra of all novel
compounds and HPLC/LC–MS data from which
conclusions were drawn.
22.Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J.
23.Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Chen, C.; Xia, W.
24.Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687–7697.
25.Baslé, O.; Li, C.-J. Org. Lett. 2008, 10, 3661–3663.
Acknowledgements
We thank GlaxoSmithKline and the University of Strathclyde
for funding. Mass spectrometry data were acquired at the
ESPRC UK National Mass Spectrometry Facility at Swansea
University.
26.Muramatsu, W.; Nakano, K.; Li, C.-J. Org. Lett. 2013, 15, 3650–3653.
27.Singh, K. N.; Kessar, S. V.; Singh, P.; Singh, P.; Kaur, M.; Batra, A.
29.Fu, W.; Guo, W.; Zou, G.; Xu, C. J. Fluorine Chem. 2012, 140, 88–94.
References
1. Antkiewicz-Michaluk, L.; Wąsik, A.; Michaluk, J. Neurotoxic. Res. 2014,
30.Rueping, M.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C.; Leonori, D.;
Vila, C. Chem. – Eur. J. 2012, 18, 5170–5174.
2. Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669–1730.
31.There are two reports containing examples of N-alkyl THIQ oxidative
nucleophiles are reported.
3. Bembenek, M. E.; Abell, C. W.; Chrisey, L. A.; Rozwadowska, M. D.;
Gessner, W.; Brossi, A. J. Med. Chem. 1990, 33, 147–152.
32.Muramatsu, W.; Nakano, K.; Li, C.-J. Org. Biomol. Chem. 2014, 12,
4. Naito, R.; Yonetoku, Y.; Okamoto, Y.; Toyoshima, A.; Ikeda, K.;
Takeuchi, M. J. Med. Chem. 2005, 48, 6597–6606.
33.Zheng, Q.-H.; Meng, W.; Jiang, G.-J.; Yu, Z.-X. Org. Lett. 2013, 15,
5. Wanner, K. T.; Praschak, I.; Höfner, G.; Beer, H. Arch. Pharm. 1996,
34.Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113,
6. Cass, L. J.; Frederik, W. S. Am. J. Med. Sci. 1963, 246, 550–557.
35.Douglas, J. J.; Nguyen, J. D.; Cole, K. P.; Stephenson, C. R. J.
Aldrichimica Acta 2014, 47, 1–25.
7. Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Org. Lett. 2012, 14,
36.Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97–113.
8. Ruiz Espelt, L.; Wiensch, E. M.; Yoon, T. P. J. Org. Chem. 2013, 78,
37.Bergonzini, G.; Schindler, C. S.; Wallentin, C.-J.; Jacobsen, E. N.;
Stephenson, C. R. J. Chem. Sci. 2014, 5, 112–116.
9. Prier, C. K.; MacMillan, D. W. C. Chem. Sci. 2014, 5, 4173–4178.
38.Kharasch, M. S.; Reinmuth, O.; Urry, W. H. J. Am. Chem. Soc. 1947,
10.Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968–6969.
39.Davis, M.; Deady, L. W.; Finch, A. J.; Smith, J. F. Tetrahedron 1973,
2987