Beilstein J. Org. Chem. 2012, 8, 1360–1365.
13.Cheng, L.; Liu, L.; Wang, D.; Chen, Y.-J. Org. Lett. 2009, 11, 3874.
41.Liu, L.; Wu, D.; Li, X.; Wang, S.; Li, H.; Li, J.; Wang, W.
42.Li, Y.-M.; Li, X.; Peng, F.-Z.; Li, Z.-Q.; Wu, S.-T.; Sun, Z.-W.;
Zhang, H.-B.; Shao, Z.-H. Org. Lett. 2011, 13, 6200.
14.Shen, K.; Liu, X.; Wang, G.; Lin, L.; Feng, X. Angew. Chem., Int. Ed.
15.Yan, W.; Wang, D.; Feng, J.; Li, P.; Zhao, D.; Wang, R. Org. Lett. 2012,
43.Li, L.; Chen, W.; Yang, W.; Pan, Y.; Liu, H.; Tan, C.-H.; Jiang, Z.
44.Liao, Y.-H.; Liu, X.-L.; Wu, Z.-J.; Du, X.-L.; Zhang, X.-M.; Yuan, W.-C.
45.Wang, C.; Yang, X.; Enders, D. Chem.–Eur. J. 2012, 18, 4832.
16.Trost, B. M.; Czabaniuk, L. C. J. Am. Chem. Soc. 2010, 132, 15534.
17.Antonchick, A. P.; Gerding-Reimers, C.; Catarinella, M.;
Schürmann, M.; Preut, H.; Ziegler, S.; Rauh, D.; Waldmann, H.
18.Jiang, K.; Jia, Z.-J.; Chen, S.; Wu, L.; Chen, Y.-C. Chem.–Eur. J. 2010,
46.Bergonzini, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 971.
19.Ogawa, S.; Shibata, N.; Inagaki, J.; Nakamura, S.; Toru, T.; Shiro, M.
20.He, R.; Ding, C.; Maruoka, K. Angew. Chem., Int. Ed. 2009, 48, 4559.
47.Siau, W.-Y.; Li, W.; Xue, F.; Ren, Q.; Wu, M.; Sun, S.; Guo, H.;
Jiang, X.; Wang, J. Chem.–Eur. J. 2012, 18, 9491.
During publication of our manuscript, Wang and coworkers reported
the Michael addition of N-protected 3-substituted oxindoles to
1,4-naphthoquinone.
21.Mai, C.-K.; Sammons, M. F.; Sammakia, T. Org. Lett. 2010, 12, 2306.
22.Liu, Y.-L.; Wang, B.-L.; Cao, J.-J.; Chen, L.; Zhang, Y.-X.; Wang, C.;
23.Cao, Z.-Y.; Zhang, Y.; Ji, C.-B.; Zhou, J. Org. Lett. 2011, 13, 6398.
48.The unprotected 3-substituted oxindoles are less reactive but easier to
access than N-Boc protected 3-substituted oxindoles (for discuss, see
[28]). While we focused on the use of unprotected 3-prochiral oxindoles
for reaction development [26-28], we tried the reaction of N-Boc
3-phenyloxindole and 1,4-naphthoquinone, as suggested by the
referee. At the standard reaction condition, the corresponding product
was obtained in 47% yield with 67% ee.
24.Liu, Y.-L.; Zhou, J. Chem. Commun. 2012, 48, 1919.
25.Liu, Y.-L.; Zhou, F.; Cao, J.-J.; Ji, C.-B.; Ding, M.; Zhou, J.
26.Qian, Z.-Q.; Zhou, F.; Du, T.-P.; Wang, B.-L.; Ding, M.; Zhao, X.-L.;
27.Zhou, F.; Ding, M.; Liu, Y.-L.; Wang, C.-H.; Ji, C.-B.; Zhang, J.; Zhou, J.
28.Ding, M.; Zhou, F.; Liu, Y.-L.; Wang, C.-H.; Zhao, X.-L.; Zhou, J.
29.Zhou, F.; Cao, Z.-Y.; Zhang, J.; Yang, H.-B.; Zhou, J. Chem.–Asian J.
License and Terms
This is an Open Access article under the terms of the
Creative Commons Attribution License
permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
30.Alemán, J.; Richter, B.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2007,
31.Alemán, J.; Carbrera, S.; Maerten, E.; Overgaad, J.; Jørgensen, K. A.
32.Galzerano, P.; Bencivenni, G.; Pesciaioli, F.; Mazzanti, A.;
Giannichi, B.; Sambri, L.; Bartoli, G.; Melchiorre, P. Chem.–Eur. J.
The license is subject to the Beilstein Journal of Organic
Chemistry terms and conditions:
The definitive version of this article is the electronic one
which can be found at:
33.Bui, T.; Syed, S.; Barbas, C. F., III. J. Am. Chem. Soc. 2009, 131,
34.Kato, Y.; Furutachi, M.; Chen, Z.; Mitsunuma, H.; Matsunaga, S.;
Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 9168.
35.Bravo, N.; Mon, I.; Companyó, X.; Alba, A.-N.; Moyano, A.; Rios, R.
36.Li, X.; Zhang, B.; Xi, Z.-G.; Luo, S.; Cheng, J.-P. Adv. Synth. Catal.
37.Liu, X.-L.; Wu, Z.-J.; Du, X.-L.; Zhang, X.-M.; Yuan, W.-C.
38.Duan, S.-W.; An, J.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2011, 13, 2290.
39.Zheng, W.; Zhang, Z.; Kaplan, M. J.; Antilla, J. C. J. Am. Chem. Soc.
40.Freund, M. H.; Tsogoeva, S. B. Synlett 2011, 503.
1365