A. S. Santana et al. / Tetrahedron Letters 53 (2012) 5733–5738
5737
7. For a review, see: (a) De Lucchi, O.; Pasquato, L. Tetrahedron 1988, 44, 6755; (b)
Dittami, J. P.; Nie, X. Y.; Nie, H.; Ramanathan, H.; Buntel, C.; Rigatti, S.; Bordner,
J.; Decosta, D. L.; Williard, P. J. Org. Chem. 1992, 57, 1151.
8. Harmata, M.; Jones, D. Tetrahedron Lett. 1996, 37, 783.
9. See, for instance: (a) Corey, E. J.; Seebach, D. J. Org. Chem. 1966, 31, 4097; For a
review, see: (b) Kolb, M. Synthesis 1990, 171.
dyine 1a which occurred in 4 h (Table 1, entry 5) furnished
(Z)-thiobutenynes 2a in 80% yield, showing that using NaOH, the
hydrothiolation always occurred more slowly and in lower yields.
Concerning the chemoselectivity of the hydrothiolation of
monosubstituted unsymmetrical buta-1,3-diynes types 1i–k, we
observed that the terminal triple bond was more reactive than
the substituted triple bond, because of the lower steric hindrance
to the addition of C4H9SH/NaOH (1.0 equiv) or C4H9SH/TBAOH
(1.0 equiv), furnishing in only 5 min (Z)-thiobutenoynes 2i–k
(Table 1, entries 17, 19 and 21). On the other hand, we believe that
an excess of C4H9SH and NaOH or TBAOH (1.4 equiv) is responsible
for the formation of small amounts of divinyl disulfides 4i–k
(Scheme 3).
10. (a) Trost, B. M.; Lavoie, A. C. J. Am. Chem. Soc. 1983, 105, 5075; (b) Trost, B. M.;
Tanigawa, Y. J. Am. Chem. Soc. 1979, 101, 4413.
11. Barton, D. H. R.; Boar, R. B. J. Chem. Soc., Perkin Trans. 1 1973, 654.
12. (a) Okamura, H.; Miura, M.; Takei, H. Tetrahedron Lett. 1979, 20, 43; (b) Trost, B.
M.; Ornstein, P. L. Tetrahedron Lett. 1981, 22, 3463; (c) Wenkert, E.; Ferreira, T.
W. J. Chem. Soc., Chem. Commun. 1982, 840; (d) Truce, W. E.; Goldhamer, D. L.;
Kruse, R. B. J. Am. Chem. Soc. 1959, 81, 4931; (e) Truce, W. E.; Heine, R. F. J. Am.
Chem. Soc. 1957, 79, 5311.
13. For the synthesis of griseoviridin, see: (a) Marcantoni, E.; Massaccesi, M.;
Petrini, M. J. Org. Chem. 2000, 65, 4553; (b) Kuligowski, C.; Bezzenine-Lafollée,
S.; Chaume, G.; Mahuteau, J.; Barrière, J.-C.; Bacqué, E.; Pancrazi, A.; Ardisson, J.
J. Org. Chem. 2002, 67, 4565; For the synthesis of benzylthicrellidone, see, for
example: (c) Lan, H. W.; Cooke, P. A.; Pattenden, G.; Bandaranayake, W. M.;
Wickramasinghe, W. A. J. Chem Soc., Perkin Trans. 1 1999, 847.
Analysis of compounds 1g–h indicated that the propargylic tri-
ple bond underwent an addition of the butylthiolate anion, which
was generated more quickly than triple bonds bearing the substi-
tuted phenyl and p-chlorophenyl (Table 1, entries 15 and 17). This
14. (a) Liu, G.; Huth, J. R.; Olejniczak, E. T.; Mendoza, F.; Fesik, S. W.; Von Geldern,
T. W. J. Med. Chem. 2001, 44, 1202; (b) Nielsen, S. F.; Nielsen, E. Ø.; Olsen, G. M.;
Liljefors, T.; Peters, D. J. Med. Chem. 2000, 43, 2217.
probably occurred due to the formation of
a stable cyclic
15. (a)Radical reactions: The Chemistry of the Thiol Group; Patai, S., Ed.; Wiley:
London, 1974. Vol. 2; (b) Griesbaum, K. Angew. Chem., Int. Ed. Engl. 1970, 9,
273–287; (c) Ichinose, Y.; Wakamatsu, K.; Nozaki, K.; Birbaum, J.-L.; Oshima,
K.; Utimoto, K. Chem. Lett. 1987, 1647–1650; (d) Benati, L.; Capella, L.;
Montevecchi, P. C.; Spagnolo, P. J. Chem. Soc., Perkin Trans. 1 1995, 1035–1038.
16. Metal-catalyzed reactions: (a) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100,
3205; (b) Cao, C.; Fraser, L. R.; Love, J. A. J. Am. Chem. Soc. 2005, 127, 17614; (c)
Weiss, C. J.; Wobser, S. D.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 2062; (d)
Ogawa, A.; Ikeda, T.; Kimura, K.; Hirao, T. J. Am. Chem. Soc. 1999, 121, 5108; (e)
Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080–
5081; (f) Malyshev, D. A.; Scott, N. M.; Marion, N.; Stevens, E. D.; Ananikov, V.
P.; Beletskaya, I. P.; Nolan, S. P. Organometallics 2006, 25, 4462.
17. (a) Truce, W. E.; Simms, J. A.; Boudakina, M. M. J. Am. Chem. Soc. 1956, 78, 695–
696; (b) Truce, W. E.; Simms, J. A. J. Am. Chem. Soc. 1956, 78, 2756–2759; (c)
Truce, W. E.; Tichenor, G. J. W. J. Org. Chem. 1972, 37, 2391–2396; (d) Freeman,
F.; Lu, H.; Zeng, Q.; Rodriguez, E. J. Org. Chem. 1994, 59, 4350; (e) Dabdoub, M.
J.; Dabdoub, V. B.; Lenardão, E. J.; Hurtado, G. R.; Barbosa, S. L.; Guerrero, P. G.,
Jr.; Nazário, C. E. D.; Viana, L. H.; Santana, A. S.; Baroni, A. C. M. Synlett 2009,
986; (f) Wadsworth, D. H.; Detty, M. R. J. Org. Chem. 1980, 45, 4611.
18. (a) Volkov, A. N.; Volkova, K. A.; Levanova, E. P.; Trofimov, B. A. Zh. Org. Khim.
1982, 18, 2049; (b) Volkov, A. N.; Volkova, K. A. Russ. J. Org. Chem. 2004, 40,
1679; (c) Zschunke, A.; Muegge, C.; Hintzsche, E.; Schroth, W. J. Praktis. Chem.
1992, 334, 141.
five-member transition state, similar to that which we recently
described, involving the addition of phenylthiolate anions (gener-
ated by the reduction of phenyl disulfide) to propargyl substituted
buta-1,3-dyines.17e
Based on these results, we envision the possibility of applying
(Z)-organylthioenynes 2 in the synthesis of 3-halothiophenes 3.
Thiophene molecules can be used as the starting material to con-
struct useful molecules in medicinal chemistry37,38 and electronic
materials.39,40
We describe herein
a novel application involving the
electrophilic cyclization of (Z)-organylthioenynes to synthesize
3-iodothiophenes type 3. We examined the reaction of (Z)-1-phenyl-
thio-1,4-diphenyl-but-1-en-3-yne 2d (1.0 equiv) and I2 (1.1 equiv)
in CH2Cl2, which provided 2,5-diphenyl-3-iodo thiophene 3d in
82% yield (Scheme 4).
In conclusion, we made improvements in the methodology to
synthesize (Z)-thiobutenynes, using the reducing system C4H9SH/
TBAOH rather than C4H9SH/NaOH. Applying this methodology,
we were able to prepare the desired compounds 2a–k rapidly
and in good to excellent yields. The efficiency of these compounds
for obtaining 3-iodothiophenes was demonstrated. The synthesis
of (Z)-enedyines using substrate (Z)-organylthioenynes in metal-
catalyzed Kumada cross-coupling reaction will also be examined.
19. Guerrero, P. G., Jr.; Dabdoub, M. J.; Marques, F. A.; Wosch, C. L.; Baroni, A. C. M.;
Ferreira, A. G. Synth. Commun. 2008, 38, 4379.
20. Lun-Hsin, K.; Lee, C. F. Org. Lett. 2011, 13, 5204.
21. Alves, D.; Sachini, M.; Jacob, R. G.; Lenardão, E. J.; Contreira, M. E.; Savegnago,
L.; Perin, G. Tetrahedron Lett. 2011, 52, 133.
22. Oliveira, R. B.; Vaz, A. B. M.; Alves, R. O.; Liarte, D. B.; Donnici, C. L.; Romanha, A.
J.; Zani, C. L. Mem. Inst. Oswaldo Cruz 2006, 101, 169.
23. Iwamoto, L. S.; Serra, O. A.; Manso, C. M. C. P.; Iamamoto, Y. Quím. Nova 1999,
22, 277.
24. Lucchese, A.; Marzorati, L. Quím. Nova 2000, 23, 641.
25. Makosza, M. Pure Appl. Chem. 2000, 72, 1399.
Acknowledgments
26. Zhang, Y.; Stanciulescu, M.; Ikura, M. Appl. Catal., A 2009, 366, 176.
27. Zea-Ponce, Y.; Mavel, S.; Assaad, T.; Kruse, S. E.; Parsons, S. M.; Emond, P.;
Chalon, S.; Giboureau, N.; Kassiou, M.; Guilloteau, D. Bioorg. Med. Chem. 2005,
13, 7453.
This study was supported by Grants from FUNDECT-MS, PROPP-
UFMS, CNPq and CAPES. Thanks to Janet W. Reid (JWR Associates)
for assistance with English corrections.
28. Bos, M. E. Tetra-n-butylammonium Hydroxide. In Encyclopedia of Reagents for
Organic Synthesis; Paquette, L., Ed.; J. Wiley & Sons: New York, 2004.
29. Gellis, A.; Kovacic, H.; Boufatah, N.; Vanelle, P. Eur. J. Med. Chem. 1858, 2008, 43.
30. Varala, R.; Enugala, R.; Nuvula, S.; Adapa, S. R. Tetrahedron Lett. 2006, 47, 877.
31. Balaleie, S.; Bararjanian, M. Synth. Commun. 2006, 36, 533.
32. Nazario, C. E. D.; Santana, A. S.; Kawasoko, C. Y.; Carollo, C. A.; Hurtado, G. R.;
Viana, L. H.; Barbosa, S. L.; Guerrero, P. G., Jr.; Marques, F. A.; Dabdoub, V. B.;
Dabdoub, M. J.; Baroni, A. C. M. Tetrahedron Lett. 2011, 52, 4177.
33. Mori, A.; Kawashima, J.; Shimada, T.; Suguro, M.; Hirabayashi, K.; Nishihara, Y.
Org. Lett. 2000, 2, 2935.
34. Mori, A.; Kondo, T.; Kato, T.; Nishihara, Y. Chem. Lett. 2001, 286.
35. Mori, A.; Shimada, T.; Kondo, T.; Sekiguchi, A. Synlett 2001, 649.
36. Cho, C. S. J. Organomet. Chem. 2005, 690, 4094.
37. Lima, L. D.; Barreiro, E. Curr. J. Med. Chem. 2005, 23.
38. Wermuth, C. G. The Practice of Medicinal Chemistry, 3rd Ed.; Academic Press:
San Diego, 2008.
References and notes
1. (a) Corey, E. J.; Shulman, J. I. J. Am. Chem. Soc. 1970, 92, 5522; (b) Oshima, K.;
Shimoji, K.; Takahashi, H.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1973, 95,
2694; (c) Mura, A. J., Jr.; Bennet, D. A.; Cohen, T. Tetrahedron Lett. 1975, 16,
4433; (d) Mura, A. J., Jr.; Majetich, G.; Grieco, P. A.; Cohen, T. Tetrahedron Lett.
1975, 16, 4437; (e) Mukayama, T.; Fukuyama, S.; Kumamoto, T. Tetrahedron
Lett. 1968, 3787; (f) Waters, M. S.; Cowen, J. A.; McWilliams, J. C.; Maligres, P.
E.; Askin, D. Tetrahedron Lett. 2000, 41, 141; (g) Sato, T.; Taguchi, D.; Suzuki, C.;
Fujisawa, S. Tetrahedron 2001, 57, 493; (h) Imanishi, T.; Ohara, T.; Sugiyama, K.;
Ueda, Y.; Takemoto, Y. J. Chem. Soc., Chem. Commun. 1992, 269.
2. Fortes, C. C.; Fortes, H. C.; Gonçalves, D. R. G. J. Chem. Soc., Chem. Commun. 1982,
857.
3. Oshima, K.; Takahashi, H.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1973, 95,
2693.
4. (a) Cohen, T.; Weisenfeld, R. B. J. Org. Chem. 1979, 44, 3601; (b) Screttas, C. G.;
Micha-Screttas, M. J. Org. Chem. 1978, 43, 1064; (c) Screttas, C. G.; Micha-
Screttas, M. J. Org. Chem. 1979, 44, 713; (d) Foubelo, F.; Gutierrez, A.; Yus, M.
Tetrahedron Lett. 1999, 40, 8173.
5. Hojo, M.; Harada, H.; Yoshizawa, J.; Hosomi, A. J. Org. Chem. 1993, 58, 6541.
6. Kanemasa, S.; Kobayashi, H.; Tanaka, J.; Tsuge, O. Bull. Chem. Soc. Jpn. 1988, 61,
3957.
39. Park, Y. S.; Kim, D.; Lee, H.; Moon, B. Org. Lett. 2006, 8, 4699.
40. Pouchain, L.; Alévêque, O.; Nicolas, Y.; Oger, O.; Le Régent, C.-H.; Allain, M.;
Blanchard, P.; Roncali, J. J. Org. Chem. 2009, 1054, 74.
41. Typical procedure for the synthesis of (Z)-1-buthylthio-1,4-diorganyl-1-buten-
3-ynes with C4H9SH/TBAOH. To a solution of 1,4-methoxyphenyl-butadiyne 1a
(5.0 mmol) in ethanol (35 ml) at 78 °C, we added dropwise a solution of
C4H9SH (7.0 mmol) and 40% TBAOH in H2O (7.0 mmol) in 95% ethanol (35 mL)
under a nitrogen atmosphere and vigorous stirring. The reaction mixture was
stirred at 78 °C for 15 min, allowed to reach room temperature, diluted with