enough to be functional group tolerant. Pericyclic or
biomimetic approaches to trienes can be used as well.10,11
In addition, syntheses of π-conjugated systems through
CꢀC bond formation, catalyzed by a transition metal such
as palladium,12 gold,13 or nickel,14 have been realized
(Scheme 1).
of but-2-en-3-ol (2a). The synthesis of 1-halogeno-1,3-dienes
was realized in three steps from acetylenic derivatives 4.
After hydrozirconationꢀiodation (Cp2ZrCl2, DIBAL-H,
NIS, THF),16 the corresponding (E)-vinyl iodides 5 were
obtained and coupled with vinylboronate 6 under Heck
conditions [Pd(OAc)2, P(o-Tol)3, AgOAc, DMF, 50 °C] to
produce 7.17 The obtained conjugated dienyl boronates 7
were then treated with NIS or NBS under basic conditions
(NaOMe, THF) to furnish the desired (E,E)-1-iodo-1,3-
dienes 1 and (E,E)-1-bromo-1,3-dienes 8 respectively in
good to excellent yields (47ꢀ92%) (Scheme 3).18
Scheme 1. Synthesis of Trienic Units
Scheme 3. Preparation of 1-Halogeno-1,3-dienes
Herein, we would like to report a chemo-, regio-, and
stereoselective method for the construction of conjugated
trienols from 1-iodo-1,3-dienes 1 and nonprotected allylic
alcohols 2 under Heck conditions15 (Scheme 2).
At first, 1-iodo-1,3-diene 1a was examined. When this
diene was treated under Heck conditions [Pd(OAc)2
(10 mol %), AgOAc (1.1 equiv)] in DMF at 45 °C for 15 h
in the presence of but-3-en-2-ol (2a) (3 equiv), the coupling
product 3a was obtained in 72% yield (Table 1, entry 1).
The use of 2 equiv of alcohol 2a gave a similar result
(Table 1, entry 2). It is worth pointing out that it was also
possible to reduce the quantity of palladium acetate to
5 mol % to produce 3a with an identical yield (Table 1,
entry 3). However, when the quantity of alcohol 2a was
reduced to 1.2 equiv, only traces of the coupling product 3a
were observed (Table 1, entry 4). The best conditions
appeared to be the use of 2 equiv of the allylic alcohol,
5 mol % of Pd(OAc)2, and 1.1 equiv of AgOAc (Table 1,
entry 3).
Benzyl-, p-methoxybenzyl-, and tert-butyldiphenylsilyl
ethersweretoleratedaswellasprotectedamines, as1-iodo-
1,3-dienes 1aꢀ1d were transformed to conjugated (E,E,E)-
trienols 3aꢀ3d in good yields (54%ꢀ72%) (Table 2).
It is worth noting that the reaction of but-3-en-2-ol (2a)
with 1-bromo-1,3-diene 8 under the previously developed
conditions [2 equiv of 2a, 5 mol % of Pd(OAc)2, and 1.1
equiv of AgOAc in DMF at 45 °C] did not lead to triene 3b
and that 1-bromo-1,3-diene 8 was recovered (Scheme 4)
indicating that the conditions used were chemoselective.
Scheme 2. General Scheme
We initiated our investigation with (E,E)-1-iodo-1,3-
dienes 1 and (E,E)-1-bromo-1,3-diene 8 in the presence
ꢀ
(10) Vogel, P.; Turks, M.; Bouchez, L.; Markovic, D.; Varela-
ꢀ
ꢀ
Alvarez, A.; Sordo, J. A. Acc. Chem. Res. 2007, 40, 931–942.
(11) (a) Leblanc, Y.; Fitzsimmons, B. J.; Zamboni, R.; Rokach, J.
J. Org. Chem. 1988, 53, 265–267. (b) Hudlicky, T.; Frazier, J. O.; Seoane,
G.; Tiedje, M.; Seoane, A.; Kwart, L. D.; Beal, C. J. Am. Chem. Soc.
1986, 108, 3755–3762. (c) BouzBouz, S.; Cossy, J. Org. Lett. 2004, 6,
3469–3472.
(12) For selected examples, see: Stille coupling: (a) Crombie, L.;
Horsham, M. A.; Jarrett, S. R. M. J. Chem. Soc., Perkin Trans. 1 1991,
1511–1524. (b) Nicolaou, K. C.; Piscopio, A. D.; Bertinato, P.;
Chakraborty, T. K.; Minowa, N.; Koide, K. Chem.;Eur. J. 1995, 1,
318–333. (c) Smith, A. B., III; Condon, S. M.; McCauley, J. A.; Leazer,
J. L.; Leahy, J. W.; Maleczka, R. E., Jr. J. Am. Chem. Soc. 1995, 117,
5407–5408. Sonogashira coupling: (d) Avignon-Tropis, M.; Berjeaud,
ꢀ
J. M.; Pougny, J. R.; Frechard-Ortuno, I.; Guillerm, D.; Linstrumelle,
G. J. Org. Chem. 1992, 57, 651–654. Suzuki coupling: (e) Torrado, A.;
ꢀ
Iglesias, B.; Lopez, S.; de Lera, A. R. Tetrahedron 1995, 51, 2435–2454.
(f) Molander, G. A.; Dehmel, F. J. Am. Chem. Soc. 2004, 126, 10313–
10318. (g) Fuwa, H.; Sasaki, M. Org. Lett. 2010, 12, 584–587. Hiyama
coupling: (h) Denmark, S. E.; Fujimori, S. J. Am. Chem. Soc. 2005, 127,
8971–8973.
(13) Hadfield, M. S.; Lee, A.-L. Chem. Commun. 2011, 47, 1333–
1335.
(14) Horie, H.; Kurahashi, T.; Matsubara, S. Chem. Commun. 2010,
46, 7229–7231.
(15) (a) Jeffery, T. J. Chem. Soc., Chem. Commun. 1991, 324–325. (b)
Jeffery, T. Tetrahedron Lett. 1993, 34, 1133–1136.
(16) Huang, Z.; Negishi, E. Org. Lett. 2006, 8, 3675–3678.
(17) (a) Stewart, S. K.; Whiting, A. Tetrahedron Lett. 1995, 36, 3925–
3928. (b) Lightfoot, A. P.; Maw, G.; Thirsk, C.; Twiddle, S. J. R.;
Whiting, A. Tetrahedron Lett. 2003, 44, 7645–7648.
(18) (a) Stewart, S. K.; Whiting, A. Tetrahedron Lett. 1995, 36, 3929–
3932. (b) Knowles, J. P.; O’Connor, V. E.; Whiting, A. Org. Biomol.
Chem. 2011, 9, 1876–1886.
B
Org. Lett., Vol. XX, No. XX, XXXX