The Journal of Organic Chemistry
Article
82.5, 109.0, 112.6, 128.2, 128.5, 129.3, 129.7, 130.6, 132.8, 165.6;
HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C30H46O8SiNa
585.2860; Found 585.2863.
132.8, 133.1, 141.9, 161.3, 166.2; IR (film): 3418, 2925, 2853, 1713,
1632, 1451, 1262, 1110, 802 cm−1; HRMS (ESI-TOF) m/z: [M +
Na]+ Calcd for C19H20O7Na 383.1107; Found 383.1089;
Synthesis of (3S,4R,E)-1-((3aR,4S,6R,6aS)-6-((Z)-3-Ethoxy-3-oxo-
prop-1-enyl)-2, 2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-4-
hydroxypent-1-en-3-yl Benzoate (5). Amberlite IR-120 acidic resin
(25 mg) was added to the solution of 13 (175 mg, 0.31 mmol) in
MeOH (15 mL). The reaction was stirred for 24 h at rt. The solid
resin was filtered with cotton wool. The solution was concentrated
under vacuum to afford 14 as a colorless oil. The crude triol 14 could
be used for the next step without any purification. A small sample was
ASSOCIATED CONTENT
* Supporting Information
Spectral data for all new compounds. This material is available
■
S
AUTHOR INFORMATION
Corresponding Author
Notes
■
25
purified on a silica gel column to get the physical data of 14: [α]D
31.0 (c 1.0, CHCl3); 1H NMR (400 MHz): δ 1.25 (d, J = 6.4 Hz, 3H),
1.30 (s, 3H), 1.40 (s, 3H), 2.56 (br s, 3H), 3.56 (dd, J = 8.0 Hz, J = 3.6
Hz, 1H), 3.74 (dd, J = 11.6 Hz, J = 5.6 Hz, 1H), 3.85 (dd, J = 11.6 Hz,
J = 3.2 Hz, 1H), 4.00−4.09 (m, 3H), 4.66 (dd, J = 6.0 Hz, J = 3.6 Hz,
1H), 4.83 (dd, J = 6.0 Hz, J = 4.0 Hz, 1H), 5.48 (dd, J = 4.8 Hz, J = 0.4
Hz, 1H), 5.92 (dd, J = 16.0 Hz, J = 5.6 Hz, 1H), 6.00 (dd, J = 16.0 Hz,
J = 5.6 Hz, 1H), 7.42−7.46 (m, 2H), 7.58 (dt, J = 7.2 Hz, J = 1.2 Hz,
1H), 8.05−8.07 (m, 2H); 13C NMR (100 MHz) δ 18.5, 24.8, 25.8,
64.5, 69.0, 70.1, 77.9, 80.9, 81.3, 81.6, 82.2, 112.8, 127.8, 128.4, 129.1,
129.7, 130.1, 133.1, 165.7; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd
for C21H28O8Na 431.1682; Found 431.1671. To a solution of triol 14
(102 mg, 0.25 mmol) in MeOH (20 mL) was added solid NaIO4 (80
mg, 0.375 mmol) at rt. The mixture was stirred for 30 min and filtered
with Celite. To the resulting solution was added
(ethoxycarbonylmethylene)triphenylphosphorane (174 mg, 0.5
mmol) at 0 °C. After being stirred at 0 °C for 60 min, the reaction
was concentrated under vacuum. The crude material was purified by
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the MOST of China
(2012ZX09502001-001), NNSF of China (projects
2012CB822101, 21072217, and 21202193). We gratefully
acknowledge financial support from the State Key Laboratory
of Natural and Biomimetic Drugs of Peking University
(K20110101). We also thank Professor Chu-Yi Yu of CAS
Key Laboratory of Molecular Recognition and Function
(Institute of Chemistry, Chinese Academy of Sciences) for
kindly measuring the optical rotation of orthodiffene A (1′) and
orthodiffene C (3′).
flash column chromatography (hexanes/EtOAc 2:1) to give
25
compound 5 as a colorless oil (89 mg, 80%). [α]
−41.4 (c 3.5,
D
REFERENCES
1
■
CHCl3); H NMR (400 MHz): δ 1.25 (s, 3H), 1.26 (t, J = 6.8 Hz,
3H), 1.27 (d, J = 6.0 Hz, 3H), 1.40 (s, 3H), 2.42 (br s, 1H), 4.00−4.08
(m, 1H), 4.10 (dd, J = 5.6 Hz, J = 4.0 Hz, 1H), 4.16 (q, J = 6.8 Hz,
2H), 4.68 (dd, J = 5.6 Hz, J = 4.0 Hz, 1H), 5.03 (dd, J = 6.0 Hz, J = 3.6
Hz, 1H), 5.05−5.08 (m, 1H), 5.51 (dd, J = 6.0 Hz, J = 4.0 Hz, 1H),
5.94−6.01 (m, 2H), 6.05 (dd, J = 16.0 Hz, J = 5.6 Hz, 1H), 6.35 (dd, J
= 12.0 Hz, J = 6.4 Hz, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.54−7.58 (m,
1H), 8.05−8.07 (m, 2H); 13C NMR (100 MHz) δ 14.1, 18.5, 24.8,
25.8, 60.4, 69.0, 78.0, 78.6, 81.5, 82.4, 82.9, 112.5, 120.9, 127.8, 128.3,
129.4, 129.7, 130.1, 133.1, 144.8, 165.7; HRMS (ESI-TOF) m/z: [M +
Na]+ Calcd for C24H30O8Na 469.1838; Found 469.1810.
(1) (a) Danishefsky, S. Nat. Prod. Rep. 2010, 27, 1114−1116.
(b) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2012, 75, 311−335.
(2) Tan, G.; Gyllenhaal, C.; Soejarto, D. D. Curr. Drug Targets 2006,
7, 265−277.
(3) Harish, H.; Srinivas, Y.; Majhi, A.; Srinivasulu, G.; Sridhar, B.;
Krishna, A. S.; Rao, J. V.; Das, B. Tetrahedron Lett . 2011, 52, 49−52.
(4) For examples of the transformation of natural products based on
the intramolecular transesterification reaction, see: (a) Thuggacins
A−C: Steinmetz, H.; Irschik, H.; Kunze, B.; Reichenbach, H.; Hofle,
G.; Jansen, R. Chem.Eur. J. 2007, 13, 5822−5832. (b)
Chondropsins A and D: Rashid, M. A.; Cantrell, C. L.; Gustafson,
K. R.; Boyd, M. R. J. Nat. Prod. 2001, 64, 1341−1344. (c) Salvinorins
D and E: Kutrzeba, L. M.; Li, X. C.; Ding, Y.; Ferreira, D.; Zjawiony, J.
K. J. Nat. Prod. 2010, 73, 707−708.
Synthesis of Orthodiffene A (1′) and Orthodiffene C (3′). To a
solution of ester 5 (42 mg, 0.094 mmol) in MeOH (5 mL) was added
PTSA·H2O (3.6 mg, 0.019 mmol) at rt. The mixture was stirred for 48
and concentrated under vacuum. The crude was purified by flash
column chromatography (hexanes/EtOAc 1:3) to give orthodiffene A
(1′) (11.5 mg, 34%) and orthodiffene C (3′) (14.9 mg, 44%).
(5) van Boggelen, M. P.; van Dommelen, B. F. G. A.; Jiang, S.; Singh,
G. Tetrahedron 1997, 53, 16897−16910.
25
1
(6) Schmidt, O. T. Methods in Carbohydrate Chemistry; Whistler, R.
L., Wolfrom, M. L., Eds.; Academic Press Inc.: New York, 1963; Vol. 2,
pp 318−319.
Orthodiffene A (1′): white solid, [α]D −35.2 (c 0.8, CHCl3); H
NMR (400 MHz): δ 1.25 (d, J = 6.8 Hz, 3H), 3.05 (br s, 2H), 4.04
(dq, J = 6.8 Hz, J = 2.0 Hz, 1H), 4.47 (t, J = 4.8 Hz, 1H), 4.55 (dd, J =
4.8 Hz, J = 4.0 Hz, 1H), 4.61 (ddd, J = 6.8 Hz, J = 4.0 Hz, J = 1.2 Hz,
1H), 5.06 (dd, J = 6.8 Hz, J = 4.8 Hz, 1H), 5.39−5.42 (m, 1H), 5.90
(dd, J = 15.6 Hz, J = 4.4 Hz, 1H), 5.93 (dd, J = 15.6 Hz, J = 4.4 Hz,
1H), 6.08 (dd, J = 10.0 Hz, J = 1.2 Hz, 1H), 6.79 (dd, J = 10.0 Hz, J =
4.0 Hz, 1H), 7.45 (t, J = 8.0 Hz, 2H), 7.56−7.59 (m, 1H), 8.04−8.06
(m, 2H); 13C NMR (100 MHz) δ 18.7, 67.1, 69.0, 73.6, 78.1, 79.1,
79.3, 121.9, 128.4, 128.6, 129.5, 129.7, 130.0, 133.3, 141.6, 161.1,
165.8; IR (film): 3410, 2923, 2852, 1713, 1633, 1452, 1261, 1106,
1025, 802 cm−1; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for
C19H20O7Na 383.1107; Found 383.1093. Orthodiffene C (3′): white
solid, [α]D25 −33.7 (c 0.6, CHCl3); 1H NMR (400 MHz): δ 1.36 (d, J
= 6.8 Hz, 3H), 2.48 (br s, 2H), 4.36 (t, J = 4.4 Hz, 1H), 4.38−4.41(m,
1H), 4.48 (dd, J = 4.8 Hz, J = 4.0 Hz, 1H), 4.60 (ddd, J = 6.0 Hz, J =
4.0 Hz, J = 0.8 Hz, 1H), 5.04 (dd, J = 6.0 Hz, J = 4.8 Hz, 1H), 5.18
(dq, J = 6.8 Hz, J = 4.4 Hz, 1H), 5.87 (dd, J = 15.6 Hz, J = 4.8 Hz,
1H), 5.92 (dd, J = 15.6 Hz, J = 4.8 Hz, 1H), 6.06 (dd, J = 10.0 Hz, J =
0.8 Hz, 1H), 6.74 (dd, J = 10.0 Hz, J = 4.0 Hz, 1H), 7.43 (t, J = 8.0 Hz,
2H), 7.53−7.58 (m, 1H), 8.02−8.04 (m, 2H); 13C NMR (100 MHz) δ
15.1, 66.9, 73.5, 73.6, 74.1, 79.0, 79.4, 121.6, 127.5, 128.4, 129.6, 130.2,
(7) Buchanan, J. G.; Dunn, A. D.; Edgar, A. R. J. Chem. Soc., Perkin
Trans. 1 1975, 1191−1200.
(8) Martin, O. R.; Yang, F.; Xie, F. Tetrahedron Lett. 1995, 36, 47−50.
(9) Sharma, G. V. M; Kumar, K. R.; Sreenivas, P.; Krishna, P. R.;
Chorgade, M. S. Tetrahedron: Asymmetry 2002, 13, 687−690.
(10) Cordero-Vargas, A.; Quiclet-Sire, B.; Zard, S. Z. Org. Biomol.
Chem. 2005, 3, 4432−4443.
(11) (a) Mitsunobu, O. Synthesis 1981, 1−28. (b) Yokayama, M.;
Toyoshima, H.; Shimizu, M.; Togo, H. J. Chem. Soc., Perkin Trans. 1
1997, 29.
(12) (a) Frechou, C.; Dheilly, L.; Beaupere, D.; Uzanet, R.; Demailly,
D. Tetrahedron Lett. 1992, 33, 5067−5070. (b) Mereyala, H. B.;
Gadikota, R. R.; Maju, J.; Arora, S. K.; Dastida, S. G.; Agarwal, S.
Bioorg. Med. Chem. 1999, 7, 2095−2103.
(13) Yu, W. S.; Mei, Y.; Kang, Y.; Hua, Z. M.; Jin, Z. D. Org. Lett.
2004, 6, 3217−3219.
(14) Massad, S. K.; Hawkins, L. D.; Baker, D. C. J. Org. Chem. 1983,
48, 5180−5182.
(15) Schmidt, B.; Biernat, A. Chem.Eur. J. 2008, 14, 6135−6141.
9722
dx.doi.org/10.1021/jo301829p | J. Org. Chem. 2012, 77, 9718−9723