Journal of the American Chemical Society
Article
Prof. John A. Porco, Jr., Prof. Aaron Beeler (BU-CMLD), and
Mr. Jihoon Lee in Boston University for helpful discussion. We
thank Dr. Paul Ralifo, Dr. Norman Lee, and Dr. Jeff Bacon
(Boston University) for assistance with NMR spectroscopy,
HRMS, and X-ray measurements.
Scheme 14. Stereochemical Explanation for Sakurai-like
Dimerization
REFERENCES
■
(1) For selected reviews on allylsilanes, see: (a) Barbero, A.; Pulido,
F. J. Acc. Chem. Res. 2004, 37, 817. (b) Chabaud, L.; James, P.;
Landais, Y. Eur. J. Org. Chem. 2004, 3173. (c) Fleming, I.; Barbero, A.;
Walter, D. Chem. Rev. 1997, 97, 2063. (d) Masse, C. E.; Panek, J. S.
Chem. Rev. 1995, 95, 1293.
Scheme 15. Further Diversification of Dimers
(2) For recent literatures on synthesizing allylsilanes, see: (a) Saito,
N.; Kobayashi, A.; Sato, Y. Angew. Chem., Int. Ed. 2012, 51, 1228.
(b) Selander, N.; Paasch, J. R.; Szabo, K. J. J. Am. Chem. Soc. 2011,
́
133, 409. (c) Wu, J.; Chen, Y.; Panek, J. S. Org. Lett. 2010, 12, 2112.
(d) Kacprzynski, M. A.; May, T. L.; Kazane, S. A.; Hoveyda, A. H.
Angew. Chem., Int. Ed. 2007, 46, 4554. (e) Shintani, R.; Ichikawa, Y.;
Hayashi, T.; Chen, J.; Nakao, Y.; Hiyama, T. Org. Lett. 2007, 9, 4643.
(f) Suginome, M.; Ito, Y. J. Organomet. Chem. 2003, 685, 218.
(g) Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Leighton, J. L. J. Am.
Chem. Soc. 2002, 124, 7920. (h) Davies, H. M.; Hansen, T.; Rutberg,
J.; Bruzinski, P. R. Tetrahedron Lett. 1997, 38, 1741.
(3) Reichard, H. A.; Micalizio, G. C. Angew. Chem., Int. Ed. 2007, 46,
1440. A single example of generation of an allylsilane (racemic
version) employing Ti-mediated alkyne−alkene reductive cross-
coupling using an internal alkyne and a vinylsilane has been
documented.
(4) (a) Gonzalez, A. Z.; Soderquist, J. A. Org. Lett. 2007, 9, 1081.
(b) Betson, M. S.; Fleming, I. Org. Biomol. Chem. 2003, 1, 4005.
(5) For recent reviews, see: (a) Reichard, H. A.; Micalizio, G. C.
Chem. Sci. 2011, 2, 573. (b) Reichard, H. A.; Mclaughlin, M.; Chen, M.
Z.; Micalizio, G. C. Eur. J. Org. Chem. 2010, 391. (c) Jeganmohan, M.;
Cheng, C.-H. Chem.Eur. J. 2008, 14, 10876. (d) Moslin, R. M.;
Miller-Moslin, K.; Jamison, T. F. Chem. Commun. 2007, 43, 4441.
(e) Broene, R. D. Top. Curr. Chem. 2007, 279, 209. (f) Gibson, S. E.;
Mainolfi, N. Angew. Chem., Int. Ed. 2005, 44, 3022.
(6) For selected examples of racemic intermolecular alkyne−alkene
reductive coupling, see: (a) Li, W.; Herath, A.; Montgomery, J. J. Am.
Chem. Soc. 2009, 131, 17024. (b) Herath, A.; Montgomery, J. J. Am.
Chem. Soc. 2008, 130, 8132. (c) Chang, H.-T.; Jayanth, T. T.; Wang,
C.-C.; Cheng, C.-H. J. Am. Chem. Soc. 2007, 129, 12032. (d) Aoki, K.;
Peat, A. J.; Buchwald, S. J. J. Am. Chem. Soc. 1998, 120, 3068. Also see
ref 3.
(7) For examples on intermolecular alkyne−alkene reductive cross-
coupling in an asymmetric fashion, see: (a) Wei, C.-H.; Mannathan, S.;
Cheng, C.-H. J. Am. Chem. Soc. 2011, 133, 6942. (b) Canterbury, D.
P.; Micalizio, G. C. J. Am. Chem. Soc. 2010, 132, 7602. (c) Kolundzic,
F.; Micalizio, G. C. J. Am. Chem. Soc. 2007, 129, 15112. Also see ref 3.
(8) For allylic 1,3-strain, see: Hoffmann, R. W. Chem. Rev. 1989, 89,
1841.
(9) For selected examples, see: (a) Chalifoux, W. A.; Reznik, S. K.;
Leighton, J. L. Nature 2012, 487, 86. (b) Wu, J.; Zhu, K.; Yuan, P.;
Panek, J. S. Org. Lett. 2012, 14, 3624. (c) Wu, J.; Becerril, J.; Lian, Y.;
Davies, H. M. L.; Porco, J. A.; Panek, J. S. Angew. Chem., Int. Ed. 2011,
50, 5938. (d) Lee, J.; Panek, J. S. Org. Lett. 2011, 13, 502. (e) Brawn,
R. A.; Panek, J. S. Org. Lett. 2010, 12, 4624. (f) Huber, J. D.; Leighton,
J. L. J. Am. Chem. Soc. 2007, 129, 14552. (g) Tinsley, J. M.; Mertz, E.;
Chong, P. Y.; Rarig, R. F.; Roush, W. R. Org. Lett. 2005, 7, 4245.
(h) Mertz, E.; Tinsley, J. M.; Roush, W. R. J. Org. Chem. 2005, 70,
8035. (i) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 123, 9488.
(j) Roush, W. R.; Madar, D. J.; Coffey, D. S. Synlett 2001, 955.
(k) Danheiser, R. L.; Dixon, B. R.; Gleason, R. W. J. Org. Chem. 1992,
57, 6094.
3. CONCLUSION
In summary, a sterically influenced and economical alkyne−alkene
reductive coupling has been developed to generate a range of
novel chiral allylsilanes that participated in Lewis acid-promoted
carbocyclization with excellent levels of selectivity. Readily available
chiral propargylsilanes are shown to be versatile building blocks
for the construction of complex allylsilanes by reductive coupling,
where the silyl group exhibits a significant steric influence on the
stereochemical course of the reaction. Our study paved the way for
rapid access to densely functionalized allylsilanes through an alkyne
reductive coupling (e.g., alkyne−alkyne, alkyne−aldehyde). More-
over, silane-directed asymmetric alkyne−alkene reductive couplings
exhibit an enhanced alkene substrate scope, achieving products
with useful selectivity even from isomeric mixtures of alkenes. The
subsequent annulations underscore the reliability of a silyl group
with C-centered chirality as a stereocontrol element and establish a
concise pathway for the convergent assembly of complex
carbocycles with potential pharmacological value.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and spectroscopic data for new
compounds. This material is available free of charge via the
been deposited with the Cambridge Crystallographic Data
Centre under CCDC 869781.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We gratefully acknowledge financial support from the NIGMS
CMLD initiative (P50-GM067041). We are grateful to
■
(10) For details concerning the preparation of propargylsilanes 1, see
Supporting Information. Also see: Lowe, J. T.; Panek, J. S. Org. Lett.
2005, 7, 3231.
18445
dx.doi.org/10.1021/ja3083945 | J. Am. Chem. Soc. 2012, 134, 18440−18446