RESEARCH
| RESEARCH ARTICLE
phenanthridine (69), and pyridine (72) were
all effective substrates, yielding a variety of alkyl-
ated N-heteroarenes of pharmaceutical impor-
tance (43).
control experiments confirmed the essential roles
of NaI, PAr3, and irradiation. Solvent plays a
crucial role for these transformations [e.g.,
dimethylformamide (DMF) as solvent is crucial
for deaminative alkylation, as the reaction failed
in acetonitrile and acetone], probably because
noncovalent interactions required for assem-
bling the CTC, such as cation-p and electrostatic
interactions, are heavily influenced by solva-
tion. Last, a proposed full catalytic cycle of NaI/
PAr3 photoredox catalysis is illustrated in Fig. 6
by taking Minisci alkylation as an example (see
fig. S4 for proposed full catalytic cycles for re-
actions with silyl enol ether and alkene). After
photofragmentation of the CTC, the generated
alkyl radical attacks N-heteroarene to form a
carbon-carbon bond. The PPh3-I• radical oxi-
dizes the delocalized carbon radical generated
after the alkyl radical attacks the p system to
regenerate PPh3 and NaI. Generally, the oxida-
tion potentials of delocalized carbon radicals
(such as benzylic radical and allylic radical) are
lower than the reduction potential of PPh3-I•
(0.69 V versus SCE) (50). Thus, the redox po-
tential of PPh3-I• is sufficient to close the redox
cycle.
22. K. Leo, Nat. Rev. Mater. 1, 16056 (2016).
23. M. Oelgemöller, Chem. Rev. 116, 9664–9682 (2016).
24. K. Okada, K. Okamoto, N. Morita, K. Okubo, M. Oda, J. Am.
Chem. Soc. 113, 9401–9402 (1991).
25. T. Qin et al., Science 352, 801–805 (2016).
26. J. T. Edwards et al., Nature 545, 213–218 (2017).
27. L. Li et al., J. Am. Chem. Soc. 137, 8328–8331
(2015).
28. W. Liu, X. Yang, Y. Gao, C.-J. Li, J. Am. Chem. Soc. 139,
8621–8627 (2017).
29. Z. Guo et al., Org. Lett. 20, 1684–1687 (2018).
30. M. C. R. Symons, R. L. Petersen, J. Chem. Soc. Faraday Trans.
II 75, 210–219 (1979).
31. S. Bloom et al., Nat. Chem. 10, 205–211 (2018).
32. A. C. Sun, E. J. McClain, J. W. Beatty, C. R. J. Stephenson,
Org. Lett. 20, 3487–3490 (2018).
33. I. Kuwajima, E. Nakamura, Acc. Chem. Res. 18, 181–187
(1985).
34. W. Kong, C. Yu, H. An, Q. Song, Org. Lett. 20, 349–352
(2018).
35. F. A. Cotton, P. A. Kibala, J. Am. Chem. Soc. 109, 3308–3312
(1987).
36. W.-M. Cheng, R. Shang, Y. Fu, ACS Catal. 7, 907–911
(2017).
37. W.-M. Cheng, R. Shang, M.-C. Fu, Y. Fu, Chem. Eur. J. 23,
2537–2541 (2017).
38. A. Studer, D. P. Curran, Nat. Chem. 6, 765–773
(2014).
39. B. Zhang, C. Mück-Lichtenfeld, C. G. Daniliuc, A. Studer, Angew.
Chem. Int. Ed. 52, 10792–10795 (2013).
40. B. Liu, C. H. Lim, G. M. Miyake, J. Am. Chem. Soc. 139,
13616–13619 (2017).
41. Y. Cheng, C. Mück-Lichtenfeld, A. Studer, J. Am. Chem. Soc.
140, 6221–6225 (2018).
42. L. Candish, M. Teders, F. Glorius, J. Am. Chem. Soc. 139,
7440–7443 (2017).
43. E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 57,
10257–10274 (2014).
44. R. J. Phipps, G. L. Hamilton, F. D. Toste, Nat. Chem. 4,
603–614 (2012).
Merging with chiral Brønsted acid
catalysis for enantioselective alkylation
To our excitement, we found that the NaI/PPh3
redox catalyst could operate synergistically with
a chiral Brønsted acid catalyst (44, 45) to achieve
asymmetric a-aminoalkylation of N-heteroarenes
(Fig. 4B). This enantioselective transformation was
reported only recently by Phipps and co-workers
(46) using an expensive iridium photoredox cata-
lyst, following from the precedent reported by
our group pairing the iridium with achiral phos-
phoric acid catalysis (36). Here, we combined
20 mol % of NaI/PPh3 with 5 mol % of chiral
phosphoric acid in the absence of transition
metals. Evaluation of various commercially avail-
able chiral phosphoric acids showed that (R)-
TRIP-PA [(R)-3,3′-bis(2,4,6-triisopropylphenyl)-1,
1′-binaphthyl-2,2′-diyl hydrogenphosphate] was
the optimal choice to deliver (S)-a-aminoalkylated
product in 97% yield and 95% enantiomeric ex-
cess (ee). Zhou-type spiro-phosphoric acids (47)
were also found to be effective, giving compa-
rable yield and enantioselectivity. The absolute
configuration of the a-aminoalkylated products
was unambiguously determined by x-ray single-
crystal analysis (73). The configuration is switch-
able by changing the absolute configuration of
the chiral phosphoric acid catalyst. A broad scope
of natural and unnatural a-amino acid–derived
RAEs was applicable to the asymmetric decar-
boxylative Minisci-type a-aminoalkylation re-
action (73–80) to produce various valuable
enantioenriched basic heterocycles in high enan-
tioselectivity (Fig. 4C). For quinoline deriva-
tives that did not possess substituents on the
2- or 4-positions, enantioselective alkylation
proceeded with C2 selectivity. Besides quinoline,
asymmetric decarboxylative C2-alkylations of
functionalized pyridines (84–86) were also
achieved in high yields and high enantiose-
lectivity. Isoquinoline was reactive to give the
a-aminoalkylation product in high yield, but the
enantioselectivity was only 33% ee (see supple-
mentary materials).
Because the noncovalent interaction (cation-p
interaction, Coulombic interaction, etc.) required
for assembly of CTC is rather common, and electron
transfer from iodide to many organic molecules is
precedented under UV (27, 28) or high-temperature
conditions (39), we posited that the iodide phos-
phine photoredox system should be generally ap-
plicable to substrates other than RAEs. Indeed,
besides decarboxylative alkenylation using RAEs
with 1,1-diphenylethylene (Fig. 5A), we have
found that NaI/PAr3 also activates Katritzky’s N-
alkylpyridinium salts to enable catalytic deam-
inative alkylation (48) with 1,1-diarylethylene to
deliver alkyl Heck-type products (49) (88–91)
(Fig. 5B). The NaI/PPh3 system also activated
Togni’s reagent for photoredox trifluoromethy-
lation of 1,1-diarylethylene and silyl enol ether
(92 and 93) (Fig. 5C). For all these reactions,
We hope the reactions presented above will
inspire future research in photoredox catalysis
by introducing a tricomponent catalytic system
based on a salt, a phosphine, and an electron-
accepting substrate to access the CTC without
the need of a traditional dye- or metal complex–
based photoredox catalyst.
45. D. Uraguchi, M. Terada, J. Am. Chem. Soc. 126, 5356–5357
(2004).
46. R. S. J. Proctor, H. J. Davis, R. J. Phipps, Science 360, 419–422
(2018).
47. J.-X. Guo, T. Zhou, B. Xu, S.-F. Zhu, Q.-L. Zhou, Chem. Sci. 7,
1104–1108 (2016).
48. J. Wu, L. He, A. Noble, V. K. Aggarwal, J. Am. Chem. Soc. 140,
10700–10704 (2018).
49. G.-Z. Wang, R. Shang, W.-M. Cheng, Y. Fu, J. Am. Chem. Soc.
139, 18307–18312 (2017).
50. Y. Fu, L. Liu, H.-Z. Yu, Y.-M. Wang, Q.-X. Guo, J. Am. Chem.
Soc. 127, 7227–7234 (2005).
REFERENCES AND NOTES
1. D. A. Nicewicz, D. W. C. MacMillan, Science 322, 77–80
(2008).
2. J. Twilton et al., Nat. Rev. Chem. 1, 0052 (2017).
3. J. Jin, D. W. C. MacMillan, Nature 525, 87–90 (2015).
4. M. H. Shaw, V. W. Shurtleff, J. A. Terrett, J. D. Cuthbertson,
D. W. C. MacMillan, Science 352, 1304–1308 (2016).
5. E. B. Corcoran et al., Science 353, 279–283 (2016).
6. I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 346,
725–728 (2014).
7. A. Bauer, F. Westkämper, S. Grimme, T. Bach, Nature 436,
1139–1140 (2005).
8. M. Silvi, C. Verrier, Y. P. Rey, L. Buzzetti, P. Melchiorre,
Nat. Chem. 9, 868–873 (2017).
9. M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 81,
6898–6926 (2016).
10. C. R. J. Stephenson, T. P. Yoon, D. W. C. MacMillan, Eds.,
Visible Light Photocatalysis in Organic Chemistry (Wiley,
2018).
ACKNOWLEDGMENTS
Funding: Supported by National Key R&D Program of China
(2018YFB1501600, 2017YFA0303502), National Natural
Science Foundation of China (21572212, 21732006, 51821006),
Strategic Priority Research Program of CAS (XDB20000000,
XDA21060101), HCPST (2017FXZY001), KY (2060000119), and
the Supercomputing Center of USTC. Author contributions:
R.S. conceived the idea, guided the project, and wrote the
manuscript; M.-C.F. and B.Z. performed the experiments;
B.W. performed the theoretical study; and R.S., M.-C.F., and
Y.F. analyzed the data and participated in the preparation of
the manuscript. Competing interests: The authors declare
no competing financial interests. Data and materials
availability: Crystallographic data are available free of
charge from the Cambridge Crystallographic Database Centre
(CCDC 1891670). All other data are available in the main text
or the supplementary materials.
11. C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 113,
5322–5363 (2013).
12. C. P. Johnston, R. T. Smith, S. Allmendinger, D. W. C. MacMillan,
Nature 536, 322–325 (2016).
13. E. R. Welin, C. Le, D. M. Arias-Rotondo, J. K. McCusker,
D. W. C. MacMillan, Science 355, 380–385 (2017).
14. C. Le, Y. Liang, R. W. Evans, X. Li, D. W. C. MacMillan, Nature
547, 79–83 (2017).
15. J. C. Tellis, D. N. Primer, G. A. Molander, Science 345, 433–436
(2014).
16. N. A. Romero, D. A. Nicewicz, Chem. Rev. 116, 10075–10166
(2016).
17. A. Vogler, H. Kunkely, Coord. Chem. Rev. 208, 321–329
(2000).
18. Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 103,
3899–4032 (2003).
19. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson,
Chem. Rev. 110, 6595–6663 (2010).
20. D. Veldman, S. C. J. Meskers, R. A. J. Janssen, Adv. Funct.
Mater. 19, 1939–1948 (2009).
SUPPLEMENTARY MATERIALS
Materials and Methods
Supplementary Text
Tables S1 to S7
Figs. S1 to S4
Spectral Data
References (51–65)
5 September 2018; resubmitted 20 November 2018
Accepted 20 February 2019
10.1126/science.aav3200
21. B. Siegmund et al., Nat. Commun. 8, 15421 (2017).
Fu et al., Science 363, 1429–1434 (2019)
29 March 2019
6 of 6