Journal of the American Chemical Society
Communication
enantioselective allylic substitution of allylic ethers with arylboronic
acids, see: (e) Kiuchi, H.; Takahashi, D.; Funaki, K.; Sato, T.; Oi, S. Org.
Lett. 2012, 14, 4502.
(8) For reviews on Cu-catalyzed enantioselective allylic substitutions
with organomagnesium, organozinc, or organoaluminum reagents, see:
(a) Hoveyda, A. H.; Hird, A. W.; Kacprzynski, M. A. Chem. Commun.
2004, 1779. (b) Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2005,
44, 4435. (c) Falciola, C. A.; Alexakis, A. Eur. J. Org. Chem. 2008, 3765.
allylic substrates affording the product with the identical absolute
configuration suggests Ar1 has greater steric interaction with the
R2 substituent (E-TS-4) than with the ClCH2 substituent (E-TS-
3).
In summary, we demonstrated the enantioselective reaction
between alkylboron compounds (alkyl-9-BBN) and allylic
chlorides under catalysis of the Cu(I)−DTBM-SEGPHOS
system that proceeds with excellent γ-selectivities and high
enantioselectivities. Introducing the DTBM substituents to the
chiral ligand is crucial for promotion of the reaction. To our
knowledge, this is the first catalytic enantioselective allylic
substitution reaction of alkylboron derivatives. The protocol
produces enantioenriched chiral terminal alkenes with an allylic
stereogenic center branched with functionalized sp3-alkyl groups
and affords an efficient strategy for the enantioselective synthesis
of α-stereogenic chiral allylsilanes.
̀ ́
(d) Alexakis, A.; Backvall, J. E.; Krause, N.; Pamies, O.; Dieguez, M.
̈
Chem. Rev. 2008, 108, 2796. (e) Harutyunyan, S. R.; den Hartog, T.;
Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824.
(9) For Cu-catalyzed γ-selective allylic substitutions with alkyl-9-BBN
(nonenantioselective system), see: (a) Ohmiya, H.; Yokobori, U.;
Makida, Y.; Sawamura, M. J. Am. Chem. Soc. 2010, 132, 2895. (b) Nagao,
K.; Ohmiya, H.; Sawamura, M. Synthesis 2012, 44, 1535. (c) Nagao, K.;
Yokobori, U.; Makida, Y.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc.
2012, 134, 8982. (d) Whittaker, A. M.; Rucker, R. P.; Lalic, G. Org. Lett.
2010, 12, 3216. See also: (e) Ohmiya, H.; Yokobori, U.; Makida, Y.;
Sawamura, M. Org. Lett. 2011, 13, 6312.
ASSOCIATED CONTENT
* Supporting Information
(10) For Cu-catalyzed enantioselective conjugate addition with alkyl-
9-BBN reagents, see: (a) Yoshida, M.; Ohmiya, H.; Sawamura, M. J. Am.
Chem. Soc. 2012, 134, 11896. See also: (b) Ohmiya, H.; Yoshida, M.;
Sawamura, M. Org. Lett. 2011, 13, 482. (c) Ohmiya, H.; Shido, Y.;
Yoshida, M.; Sawamura, M. Chem. Lett. 2011, 40, 928.
(11) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura,
T.; Kumobayashi, H. Adv. Synth. Catal. 2001, 343, 264.
(12) For reviews on the synthesis of allylsilanes, see: (a) Masse, C. E.;
Panek, J. S. Chem. Rev. 1995, 95, 1293. (b) Fleming, I.; Barbero, A.;
Walter, D. Chem. Rev. 1997, 97, 2063. (c) Chabaund, L.; James, P.;
Landais, Y. Eur. J. Org. Chem. 2004, 3173.
■
S
Experimental details and characterization data for all new
compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
(13) For the synthesis of enantioenriched allylsilanes through Cu-
catalyzed enantioselective allylic substitutions of prochiral γ-silylated
primary allylic alcohol derivatives with organozinc or organoaluminum
reagents, see: (a) Kacprzynski, M. A.; May, T. L.; Kazane, S. A.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 4554. (b) Gao, F.;
McGrath, K. P.; Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132,
14315. For the synthesis of allylsilanes through Cu-catalyzed allylic
substitutions with silylating reagents, see: (c) Vyas, D. J.; Oestreich, M.
Chem. Commun. 2010, 568. (d) Vyas, D. J.; Oestreich, M. Angew. Chem.,
Int. Ed. 2010, 49, 8513.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by Grants-in-Aid for Young Scientists
(A), JSPS and the Uehara Memorial Foundation to H.O. and by
CREST, JST to M.S.
REFERENCES
■
(1) Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany,
2005.
(14) For the synthesis of enantioenriched allylsilanes through
palladium-catalyzed allylic substitutions of enantioenriched γ-silylated
secondary allylic alcohol derivatives with organoboronic acids, see: Li,
D.; Tanaka, T.; Ohmiya, H.; Sawamura, M. Org. Lett. 2010, 12, 3344.
(2) For reviews on transition-metal-catalyzed enantioselective
conjugate additions with organoboron compounds, see: (a) Hayashi,
T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829. (b) Tian, P.; Dong, H.-Q.;
Lin, G.-Q. ACS Catal. 2012, 2, 95.
(3) For a review on transition-metal-catalyzed allylic substitutions with
organoboron compounds, see: Pigge, F. C. Synthesis 2010, 1745.
(4) For Ni-catalyzed enantioselective allylic substitution of arylboronic
acids, see: Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin
Trans. 1 2000, 15.
(5) For Cu-catalyzed enantioselective allylic substitutions with aryl-,
alkenyl-, and allenylboronates, see: (a) Shintani, R.; Takatsu, K.; Takeda,
M.; Hayashi, T. Angew. Chem., Int. Ed. 2011, 50, 8656. (b) Jung, B.;
Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 1490. (c) Gao, F.; Carr, J. L.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2012, 51, 6613.
(6) For Pd-catalyzed enantioselective allylic substitutions with
allylboronates, see: (a) Zhang, P.; Brozek, L. A.; Morken, J. P. J. Am.
Chem. Soc. 2010, 132, 10686. (b) Zhang, P.; Le, H.; Kyne, R. E.; Morken,
J. P. J. Am. Chem. Soc. 2011, 133, 9716. (c) Brozek, L. A.; Ardolino, M. J.;
Morken, J. P. J. Am. Chem. Soc. 2011, 133, 16778.
(7) For Rh-catalyzed enantioselective allylic substitution of cis-4-
cyclopenten-1,3-diol derivatives with arylboronic acids, see: (a) Menard,
F.; Chapman, T. M.; Dockendorff, C.; Lautens, M. Org. Lett. 2006, 8,
4569. (b) Menard, F.; Perez, D.; Roman, D. S.; Chapman, T. M.;
Lautens, M. J. Org. Chem. 2010, 75, 4056. For Rh-catalyzed
enantioselective allylic substitution of (Z)-2-butene-1,4-diol derivatives
with arylboron compounds, see: (c) Miura, T.; Takahashi, Y.;
Murakami, M. Chem. Commun. 2007, 595. (d) Yu, B.; Menard, F.;
Isono, N.; Lautens, M. Synthesis 2009, 853. For Rh-catalyzed
1
(15) The yields of 4aa in Scheme 1 were determined by H NMR
analysis of the crude products.
(16) For Scheme 1 and Tables 1−3, unreacted allylic chloride (3) was
detected in the crude materials after removal of the catalyst.
(17) For stereoconvergent synthesis of α-stereogenic chiral
allylboronates from an E/Z mixture of allylic aryl ethers using a
NHC−Cu catalyst, see: Park, J. K.; Lackey, H. H.; Ondrusek, B. A.;
McQuade, D. T. J. Am. Chem. Soc. 2011, 133, 2410.
(18) For discussion on the effect of the DTBM groups in the
enantioselective Cu-catalyzed hydrosilylation of aryl ketones, see:
Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower, A. J. Am. Chem. Soc.
2003, 125, 8779.
(19) The absolute configuration of 4bb was determined by
transforming it to a known compound. See SI for details. Absolute
configurations of 4aa and the other products listed in Table 2 were
assigned by consideration of the stereochemical pathway.
(20) The absolute configuration of allylsilane 4hg was determined by
transforming it to a chiral secondary alcohol by alkene reduction,
followed by Fleming−Tamao oxidation with retention of configuration.
See SI for details. Absolute configurations of the other allylsilanes were
assigned by consideration of the stereochemical pathway.
18576
dx.doi.org/10.1021/ja3093955 | J. Am. Chem. Soc. 2012, 134, 18573−18576