C O M M U N I C A T I O N S
Table 2. Aldehyde Scope
and (R)-Penflutizide could be synthesized in high enantioselectivity
using our methodology. (S)-Aquamox could also be prepared. In
this case, somewhat lower enantioselectivity was achieved.16
Figure 2. Antihypertensive pharmaceuticals made using our new
methodology.
In summary, we have developed a direct synthesis of chiral
aminals from aldehydes using a phosphoric acid as catalyst. This
methodology has been applied to pharmaceutically relevant com-
pounds. Current studies in our laboratories aim at further expanding
the scope of this chemistry.
a From chiral stationary phase HPLC analysis. b Reaction at -15 °C.
c (S)-TRIP 4a (10 mol%) was used as catalyst (70 °C, 4 h).
turned out to be highly tolerant to arene substitution, and essentially
all investigated amides gave excellent enantioselectivities (entries
1-11). Aminal 3k was crystallized from CH2Cl2, and its structure,
including its absolute configuration, was determined from Ro¨ntgen
diffraction studies. Furthermore, sulfonamide 7 gave the corre-
sponding cyclic product 8 in excellent enantioselectivity. Aminal
8 has previously been shown to racemize at room temperature,
which we confirmed.15
Acknowledgment. We thank the Alexander von Humboldt
Foundation (fellowship for S.V.), the Max-Planck-Society, the DFG
(Priority Program Organocatalysis SPP1179), AstraZeneca (Award
in Organic Chemistry to B.L.), Merck KGaA, and the Fond der
Chemischen Industrie (Award to B.L.).
Supporting Information Available: Experimental procedures,
compound characterization, NMR-spectra, and HPLC traces and
Rontgen data (PDF). This material is available free of charge via the
Table 3. 2-Aminobenzamide Scope
¨
References
(1) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed.
2004, 43, 1566. (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004,
126, 5356. For a review, see: (c) Akiyama, T. Chem. ReV. 2007, 107, 5744.
(2) (a) Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int. Ed. 2005,
44, 7424. (b) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2006, 128, 84. (c) Rueping, M.; Sugiono, E.; Azap, C.
Angew. Chem., Int. Ed. 2006, 45, 2617. (d) Guo, Q.-X.; Liu, H.; Guo, C.;
Luo, S.-W.; Gu, Y.; Gong, L.-Z. J. Am. Chem. Soc. 2007, 129, 3790. (e)
Jia, Y.-X.; Zhong, J.; Zhu, S.-F.; Zhang, C.-M.; Zhou, Q.-L. Angew. Chem.,
Int. Ed. 2007, 46, 5565. (f) Jiao, P.; Nakashima, D.; Yamamoto, H. Angew.
Chem., Int. Ed. 2008, 47, 2411.
(3) (a) Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.;
Wang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2005, 127, 15696. (b) Liang,
Y.; Rowland, E. B.; Rowland, G. B.; Perman, J. A.; Antilla, J. C. Chem.
Commun. 2007, 4477. (c) Li, G.-L.; Fronczek, F. R.; Antilla, J. C. J. Am.
Chem. Soc. 2008, 130, 12216.
(4) Verdel, B. M.; Souverein, P. C.; Egberts, A. C. G.; Leufkens, H. G. M.
Ann. Pharm. 2006, 40, 1040, and references therein.
(5) Mavragani, C. P.; Moutsopoulos, H. M. Clinic ReV. Allerg. Immunol. 2007,
32, 287.
(6) Felix, W.; Rimbach, G.; Wengenroth, H. Arzneim.-Forsch. 1969, 19, 1860.
(7) Militante, J; Ma, B.-W.; Akk, G.; Steinbach, H. Mol. Pharmacol. 2008,
74, 764.
(8) Naef, R.; Seebach, D. HelV. Chim. Acta 1985, 68, 135.
(9) (a) Ouellet, S. G.; Tuttle, J. B.; MacMillan, W. C. J. Am. Chem. Soc. 2005,
127, 32. (b) Yang, J. W.; Fonseca, M. T. H.; List, B. J. Am. Chem. Soc.
2005, 127, 15036.
(10) (a) Sharma, S. D.; Kaur, V. Synthesis 1989, 677. (b) Braghiroli, D.; Puia,
G.; Cannazza, G.; Tait, A.; Parenti, C.; Losi, G.; Baraldi, M. J. Med. Chem.
2002, 45, 2355.
(11) Uzunov, D. P.; Zivkovich, I.; Pirkle, W. H.; Costa, E.; Guidotti, A. J. Pharm.
Sci. 1995, 84, 937.
a From HPLC analysis using an OD-H column. b Er measured from
crude product; compound 8 racemizes upon storage at room temperature.
Finally, our methodology can also be applied to systems of
practical relevance. While Thiabutazide could not be prepared using
our standard conditions because of a lack of solubility of the
required reagent, clean conversion occurred if the reaction was
conducted in CH2Cl2 using catalyst 4e providing (R)-Thiabutazide
in 81% yield and 21 er (91% ee) (Figure 2). Thiabutazide proved
to be configurationally stable during the reaction conditions and
isolation. Similarly, (R)-Cyclopenthiazide, (R)-Bendroflumethiazide,
(12) Hyun, M. H.; Pirkle, W. H. J. Chromatogr., A 2000, 876, 221.
(13) For a review on TRIP, see: Adair, G.; Mukherjee, S.; List, B. Aldrichimica
Acta 2008, 41, 31.
(14) Cheng, X.; Goddard, R.; List, B. Angew. Chem., Int. Ed. 2008, 47, 5079.
(15) Cannazza, G.; Braghiroli, D.; Iuliani, P.; Parenti, C. Tetrahedron: Asymmetry
2006, 17, 3158.
(16) Catalyst (R)-4f was used in this case. For details, see SI.
JA8071034
9
J. AM. CHEM. SOC. VOL. 130, NO. 47, 2008 15787