10.1002/anie.201806569
Angewandte Chemie International Edition
COMMUNICATION
Kitamura, D. Lee, S. Hayashi, S. Tanaka, M. Yoshimura, J. Org. Chem.
2002, 67, 8685–8687; d) S. N. Mistry, N. Drinkwater, C. Ruggeri, K. K.
Sivaraman, S. Loganathan, S. Fletcher, M. Drag, A. Paiardini, V. M.
Avery, P. J. Scammells, S. McGowan, J. Med. Chem. 2014, 57, 9168–
9183.
currently utilizing this umpolung strategy toward carbon dioxide
under a chiral environment, to mimic the plants’ CBB-cycle.[29]
This will help us expand our knowledge on enzymatic
(de)carboxylation reactions[30] and CO2-chemistry in prebiotic
conditions, to further elucidate the question of the origin of life.
[11] a) H. C. Harsha, H. Molina, A. Pandey, Nat. Protoc. 2008, 3, 505; b) P.
Bjurling, Y. Watanabe, B. Langstrom, Appl. Radiat. Isotopes 1988, 39,
627–630.
[12] K. Tanaka, T. Matsui, T. Tanaka, J. Am. Chem. Soc. 1989, 111, 3765–
3767.
[13] a) R. Breslow, J. Am. Chem. Soc. 1957, 79, 1762–1763; b) R. Breslow,
J. Am. Chem. Soc. 1958, 80, 3719–3726; c) R. Kluger, Chem. Rev.
1987, 87, 863–876.
[14] a) Q. Y. Hu, R. Kluger, J. Am. Chem. Soc. 2002, 124, 14858–14859; b)
Q. Hu, R. Kluger, J. Am. Chem. Soc. 2005, 127, 12242–12243.
[15] The low diffusion barrier of CO2 precludes the C-C bond formation
reaction and conversion is negligible, see: O. M. Gonzalez-James, D. A.
Singleton, J. Am. Chem. Soc. 2010, 132, 6896–6897.
[16] a) L. Gu and Y. Zhang, J. Am. Chem. Soc. 2010, 132, 914–915; b) P.-C.
Chiang, J. W. Bode, Org. Lett. 2011, 13, 2422–2425.
Scheme 4. Large-scale carboxylation of aldehyde, and the reductive
amination reaction to access unnatural -aryl amino acid ester 8a (Ar = 4-F-
C6H4), and the utility of -keto acids.
[17] a) D. J. Heldebrant, P. G. Jessop, C. A. Thomas, C. A. Eckert, C. L.
Liotta, J. Org. Chem. 2005, 70, 5335–5338; b) C. Villiers, J.-P. Dognon,
R. Pollet, P. Thuéry, M. Ephritikhine, Angew. Chem. Int. Ed. 2010, 49,
3465–3468.
Acknowledgements
[18] The reaction is compatible in dimethyl sulfoxide (DMSO) (Table S16),
excluding the involvement of DMF as a C1 source. See examples: a) J.
Kim, J. Choi, K. Shin, S. Chang, J. Am. Chem. Soc. 2012, 134, 2528–
2531; b) A. B. Pawar, S. Chang, Chem. Commun. 2014, 50, 448–450;
c) A. Rusina, A. A. Viček, Nature 1965, 206, 295.
The generous support from the Department of Chemistry,
University of Copenhagen, and from the Novo Nordisk Fonden
(NNF17OC0027598) is gratefully acknowledged. We thank Prof.
Michael Pittelkow, Prof. Mogens Brønsted, and Prof. Morten
Meldal for sharing chemicals and analytical equipment. We also
thank our analytical departments (NMR, GC/MS, LC/MS, HRMS)
and Kristina Eriksen (X-ray analysis) for their kind support.
[19] E. G. Delany, C.-L. Fagan, S. Gundala, K. Zeitler, S. J. Connon, Chem.
Commun. 2013, 49, 6513–6515.
[20] R. Mělnický, M. Grepl, A. Lyčka, V. Bertolasi, L. Kvapil, B. Dvořáková,
P. Hradil, Synthesis 2013, 45, 2447–2457.
[21] CCDC 1856602 contains the crystallographic data for this compound
(2a). This data can be obtained free of charge from The Cambridge
Crystallographic Data Center.
Keywords: Carbon dioxide • Umpolung • -keto acids •
carboxylation • amino acids
[22] For electrochemical generation of reactive intermediates for
carboxylation, see: H. Maekawa, H. Okawara, T. Murakami,
Tetrahedron Lett. 2017, 58, 206–209.
[1]
[2]
a) T. Schwander, L. Schada von Borzyskowski, S. Burgener, N. S.
Cortina, T. J. Erb, Science 2016, 354, 900-904; b) Q. Liu, L. Wu, R.
Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933; c) M. Aresta, A.
Dibenedetto, A. Angelini, Chem. Rev. 2014, 114, 1709–1742; d) V. P.
Indrakanti, J. D. Kubicki, H. H. Schobert, Energy Environ. Sci. 2009, 2,
745–758.
[23] a) Y. He, Y. Xue, J. Phys. Chem. A 2010, 114, 9222–9230; b) M. J.
White, F. J. Leeper, J. Org. Chem. 2001, 66, 5124–5131.
[24] a) V. Nair, V. Varghese, R. R. Paul, A. Jose, C. R. Sinu, R. S. Menon,
Org. Lett. 2010, 12, 2653–2655; b) B. Maji, S. Vedachalan, X. Ge, S. T.
Cai, X. W. Liu, J. Org. Chem. 2011, 76, 3016–3023; c) P. Hirapara, D.
Riemer, N. Hazra, J. Gajera, M. Finger, S. Das, Green Chem. 2017, 19,
5356–5360; d) D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T.
Rovis, Chem. Rev. 2015, 115, 9307–9387. A trace amount of isopropyl
ester (6a, from Ti(OiPr)4 of benzoic acid was observed by analyzing the
crude reaction mixture by GC-MS using the standard reaction
conditions (Scheme S5).
F. Julia-Hernandez, T. Moragas, J. Cornella, R. Martin, Nature 2017,
545, 84.
[3]
[4]
N. J. Claassens, Microb. Biotechnol. 2017, 10, 31–34.
a) R. J. Spreitzer, M. E. Salvucci, Annu. Rev. Plant Biol. 2002, 53, 449–
475; b) G. H. Lorimer, Annu. Rev. Plant Physiol. 1981, 32, 349–382.
D. Seebach, Angew. Chem. Int. Ed. Engl. 1979, 18, 239–258.
S. Seo, M. C. Willis, Org. Lett. 2017, 19, 4556–4559.
[5]
[6]
[7]
[25] a) B. Lou, L. Dai, Youji Huaxue 1990, 10, 357–359; b) S. Kang, C. Joo,
S. M. Kim, H. Han and J. W. Yang, Tetrahedron Lett., 2011, 52, 502–
504; c) S. M. Kim, D. W. Kim, J. W. Yang, Org. Lett. 2014, 16, 2876-
2879.
a) J. W. Bode, Acc. Chem. Res. 2017, 50, 2104–2115; b) J. W. Bode, R.
M. Fox, K. D. Baucom, Angew. Chem. Int. Ed. 2006, 45, 1248–1252.
a) Q.-Q. Wang, K. Xu, Y.-Y. Jiang, Y.-G. Liu, B.-G. Sun, C.-C. Zeng,
Org. Lett. 2017, 19, 5517–5520; b) T. Sehl, S. Bock, L. Marx, Z.
Maugeri, L. Walter, R. Westphal, C. Vogel, U. Menyes, M. Erhardt, M.
Muller, M. Pohl, D. Rother, Green Chem. 2017, 19, 380–384; c) A.
Hossian, M. K. Manna, K. Manna, R. Jana, Org. Biomol. Chem. 2017,
15, 6592–6603; d) H. Feng, D. S. Ermolat’ev, G. Song, E. V. Van der
Eycken, J. Org. Chem. 2011, 76, 7608–7613; e) R. Chen, L. Zeng, B.
Huang, Y. Shen, S. Cui, Org. Lett. 2018, 20, 3377-3380; f) M. K. H. Doll,
J. Org. Chem. 1999, 64, 1372–1374.
[8]
[26] a) H. A. Riley, A. R. Gray, Org. Synth. 1935, 15, 67–69; b) J. Anatol, A.
Medète, Synthesis 1971, 538–539.
[27] For an enzymatic carboxylation of acetaldehyde in aqueous solution,
see: M. Miyazaki, M. Shibue, K. Ogino, H. Nakamura, H. Maeda, Chem.
Commun. 2001, 1800–1801.
[28] B. H. Patel, C. Percivalle, D. J. Ritson, C. D. Duffy, J. D. Sutherland,
Nat. Chem. 2015, 7, 301–307.
[29] a) J. Vaitla, Y. Guttormsen, J. K. Mannisto, A. Nova, T. Repo, A. Bayer,
K. H. Hopmann, ACS Catal. 2017, 7, 7231–7244; b) S. Y. Park, I. S.
Hwang, H. J. Lee, C. E. Song, Nat. Commun. 2017, 8, 14877.
[30] P. V. Attwood, Int. J. Biochem. Cell B 1995, 27, 231–249.
[9]
H. Seo, M. H. Katcher, T. F. Jamison, Nature Chem. 2017, 9, 453–456.
[10] a) R. M. Herbst, D. Rittenberg, J. Org. Chem. 1943, 8, 380–389; b) A. S.
C. Chan, C. C. Chen, Y. C. Lin, Appl. Catal. A. 1994, 119, L1–L5; c) M.
This article is protected by copyright. All rights reserved.