F
T. Ikawa et al.
Letter
Synlett
2015, 48, 702. For selected papers on indoline syntheses by
dearomatization reactions, see. (c) Kuwano, R.; Sato, K.;
Kurokawa, T.; Karube, D.; Ito, Y. J. Am. Chem. Soc. 2000, 122,
7614. (d) Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew.
Chem. Int. Ed. 2015, 54, 8809. (e) He, F.; Bo, Y.; Altom, J. D.;
Corey, E. J. J. Am. Chem. Soc. 1999, 121, 6771. (f) Kobayashi, S.;
Ueda, T.; Fukuyama, T. Synlett 2000, 883. (g) Ishikawa, H.;
Elliott, G. I.; Velcicky, J.; Choi, Y.; Boger, D. L. J. Am. Chem. Soc.
2006, 128, 10596. (h) Jones, S. B.; Simmons, B.; Mastracchio, A.;
MacMillan, D. W. C. Nature 2011, 475, 183. (i) Mizoguchi, H.;
Oikawa, H.; Oguri, H. Nat. Chem. 2014, 6, 57. (j) Awata, A.; Arai,
T. Angew. Chem. Int. Ed. 2014, 53, 10462.
(10) For studies discussing the addition of nitrogen nucleophiles to
benzynes, see: (a) Liu, Z.; Larock, R. C. J. Am. Chem. Soc. 2005,
127, 13112. (b) Liu, Z.; Larock, R. C. J. Org. Chem. 2006, 71, 3198.
(c) Liu, Z.; Larock, R. C. Org. Lett. 2003, 5, 4673. (d) Li, L.; Qiu, D.;
Shi, J.; Li, Y. Org. Lett. 2016, 18, 3726.
(11) The use of our newly developed precursor, 2-(trimethyl-
silyl)phenyl trimethylsilyl ether (see Ref. 12) instead of 5a also
gave trans-1f (46%, dr = 14:1) and 6f (39%), which was very
similar to Table 1, entry 6. The reaction was performed with the
silyl ether (1.5 equiv), nonaflourobutane-1-sulfonyl fluoride
(2.3 equiv), 3f (1.0 equiv), and CsF (4.5 equiv) in MeCN (0.10 M)
at 60 °C for 26 h.
(3) For selected reviews on indole synthesis, see: (a) Wu, H.; He,
Y.-P.; Shi, F. Synthesis 2015, 47, 1990. (b) Zi, W.; Zuo, Z.; Ma, D.
Acc. Chem. Res. 2015, 48, 702. (c) Taber, D. F.; Tirunahari, P. K.
Tetrahedron 2011, 67, 7195. (d) Miller, K. A.; Williams, R. M.
Chem. Soc. Rev. 2009, 38, 3160.
(12) Ikawa, T.; Masuda, S.; Nakajima, H.; Akai, S. J. Org. Chem. 2017,
82, 4242.
(13) For an introduction to telescoping syntheses, see:
(a) Nishimura, K.; Saitoh, T. Chem. Pharm. Bull. 2016, 64, 1043.
(b) Anderson, N. G. Practical Process Research & Development;
Academic Press: San Diego, 2000. (c) Ikemoto, T. In Process
Chemistry of Pharmaceuticals; Kagaku-Dojin Publishing: Kyoto,
2013, (in Japanese).
(4) For reviews on syntheses of indolines through the formation of
pyrrolidine rings, see: (a) Anas, S.; Kagan, H. B. Tetrahedron:
Asymmetry 2009, 20, 2193. (b) Liu, D.; Zhao, G.; Xiang, L. Eur. J.
Org. Chem. 2010, 3975. For selected papers, see: (c) Dounay, A.
B.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2005, 127,
10186. (d) Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P.
Angew. Chem. Int. Ed. 2011, 50, 7438. (e) Miyaji, R.; Asano, K.;
Matsubara, S. Org. Lett. 2013, 15, 3658. (f) Minatti, A.; Buchwald,
S. L. Org. Lett. 2008, 10, 2721. (g) Ruano, J. L. G.; Alemán, J.;
Catalán, S.; Marcos, V.; Monteagudo, S.; Parra, A.; del Pozo, C.;
Fustero, S. Angew. Chem. Int. Ed. 2008, 47, 7941. (h) Hyde, A. M.;
Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47, 177. (i) Pian, J.-X.;
He, L.; Du, G.-F.; Guo, H.; Dai, B. J. Org. Chem. 2014, 79, 5820.
(5) For selected recent reviews on benzynes, see: (a) Sanz, R. Org.
Prep. Proced. Int. 2008, 40, 215. (b) Kitamura, T. Aust. J. Chem.
2010, 63, 987. (c) Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem. Soc.
Rev. 2012, 41, 3140. (d) Tadross, P. M.; Stoltz, B. M. Chem. Rev.
2012, 112, 3550. (e) Wu, C.; Shi, F. Asian J. Org. Chem. 2013, 2,
116. (f) Dubrovskiy, A. V.; Markina, N. A.; Larock, R. C. Org.
Biomol. Chem. 2013, 11, 191. (g) Yoshida, H. In Comprehensive
(14) Sudalai and co-workers reported that γ-amino α,β-unsaturated
nitriles could not be obtained (see Ref. 8a).
(15) For selected examples related to 3-methoxybenzyne, see:
(a) Shi, J.; Qiu, D.; Wang, J.; Xu, H.; Li, Y. J. Am. Chem. Soc. 2015,
137, 5670. (b) Umezu, S.; dos Passos Gomes, G.; Yoshinaga, T.;
Sakae, M.; Matsumoto, K.; Iwata, T.; Alabugin, I.; Shindo, M.
Angew. Chem. Int. Ed. 2017, 56, 1298. (c) Matsumoto, T.; Hosoya,
T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1991, 32, 6735.
(d) Yoshida, H.; Shirakawa, E.; Honda, Y.; Hiyama, T. Angew.
Chem. Int. Ed. 2002, 41, 3247. (e) Tadross, P. M.; Gilmore, C. D.;
Bugga, P.; Virgil, S. C.; Stoltz, B. M. Org. Lett. 2010, 12, 1224.
(16) For selected recent papers on silylbenzynes, see: (a) Akai, S.;
Ikawa, T.; Takayanagi, S.-i.; Morikawa, Y.; Mohri, S.;
Tsubakiyama, M.; Egi, M.; Wada, Y.; Kita, Y. Angew. Chem. Int.
Ed. 2008, 47, 7673. (b) Dai, M.; Wang, Z.; Danishefsky, S. J. Tetra-
hedron Lett. 2008, 49, 6613. (c) Diemer, V.; Begaud, M.; Leroux,
F. R.; Colobert, F. Eur. J. Org. Chem. 2011, 341. (d) Ikawa, T.;
Nishiyama, T.; Shigeta, T.; Mohri, S.; Morita, S.; Takayanagi, S.-i.;
Terauchi, Y.; Morikawa, Y.; Takagi, A.; Ishikawa, Y.; Fujii, S.; Kita,
Y.; Akai, S. Angew. Chem. Int. Ed. 2011, 50, 5674. (e) Ikawa, T.;
Tokiwa, H.; Akai, S. J. Synth. Org. Chem., Jpn. 2012, 70, 1123.
(f) Bronner, S. M.; Mackey, J. L.; Houk, K. N.; Garg, N. K. J. Am.
Chem. Soc. 2012, 134, 13966. (g) Ikawa, T.; Takagi, A.; Goto, M.;
Aoyama, Y.; Ishikawa, Y.; Itoh, Y.; Fujii, S.; Tokiwa, H.; Akai, S. J.
Org. Chem. 2013, 78, 2965. (h) Yoshida, H.; Yoshida, R.; Takaki, K.
Angew. Chem. Int. Ed. 2013, 52, 8629. (i) Ikawa, T.; Urata, H.;
Fukumoto, Y.; Sumii, Y.; Nishiyama, T.; Akai, S. Chem. Eur. J.
2014, 20, 16228. (j) Ikawa, T.; Masuda, S.; Takagi, A.; Akai, S.
Chem. Sci. 2016, 7, 5206.
Organic Synthesis II;
C
4hV,4a0po.l9
.
Knochel, P.; Molander, G. A., Eds.; Elsevier:
Amsterdam, 2014, 517. (h) Yoshida, S.; Hosoya, T. Chem. Lett.
2015, 44, 1450. (i) Karmakar, R.; Lee, D. Chem. Soc. Rev. 2016, 45,
4459. (j) Zeng, Y.; Hu, J. Synthesis 2016, 48, 2137.
(6) For stereoselective benzyne reactions, see: (a) Webster, R.;
Lautens, M. Org. Lett. 2009, 11, 4688. (b) Peña, D.; Pérez, D.;
Guitián, E. Chem. Rec. 2007, 7, 326. (c) Caeiro, J.; Peña, D.; Cobas,
A.; Párez, D.; Guitián, E. Adv. Synth. Catal. 2006, 348, 2466.
(d) Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M.
J. Am. Chem. Soc. 2005, 127, 15028.
(7) For indoline syntheses through reactions with benzynes, see:
(a) Guo, J.; Kiran, C. I. N.; Gao, J.; Reddy, R. S.; He, Y. Tetrahedron
Lett. 2016, 57, 3481. (b) Gilmore, C. D.; Allan, K. M.; Stoltz, B. M.
J. Am. Chem. Soc. 2008, 130, 1558.
(17) The corresponding diastereomer of (±)-1s was below the detec-
tion limit of 1H NMR (>50:1).
(8) During the preparation of this manuscript (see Ref. 9), closely
related work was published by the groups of Sudalai and She:
(a) Aher, R. D.; Suryavanshi, G. M.; Sudalai, A. J. Org. Chem. 2017,
82, 5940. (b) Xu, D.; Zhao, Y.; Song, D.; Zhong, Z.; Feng, S.; Xie,
X.; Wang, X.; She, X. Org. Lett. 2017, 19, 3600.
(9) For preliminary work carried out in relation to this study, see:
Ikawa, T.; Sumii, Y.; Takagi, A.; Akai, S. The 135th Annual Meeting
of the Pharmaceutical Society of Japan (Kobe, March, 2015),
Abstract Book No. 2. Pharmaceutical Society of Japan: Tokyo: 83
(18) Indolines 1a–r; General Procedure
A test tube was charged with the appropriate benzyne precur-
sor 5 (1.5 equiv) and a magnetic stir bar. THF (1.0 mL, 50 mM),
which did not have to be anhydrous, was added to the tube and
the mixture was stirred for a few minutes to dissolve 5. The γ-
tosylamino α,β-unsaturated nitrile 3 (1.0 equiv) and 18-crown-
6 (3.0 equiv) were added to the solution, and the flask was
equipped with a screw cap. (This solution was stirred for 10 min
at the indicated temperature when the reaction was conducted
at 0 °C or below.) CsF (3.0 equiv) was quickly added to the test
tube, which was then resealed with the screw cap, and the
mixture was stirred at the appropriate temperature until either
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–G