Journal of the American Chemical Society
Page 4 of 5
2000. (b) Hall, D. G. Boronic Acids; Wiley-VCH: Weinheim, Germany,
(11) Knapp, D. M.; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009,
131, 6961.
(12) Schröder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc.
2012, 134, 8298.
2005. (c) Hall, D. G., Ed. Boronic Acids: Preparation and Applications in
Organic Synthesis, Medicine and Materials; Wiley-VCH: New York,
2011.
1
2
3
4
5
6
7
8
9
(2) (a) Primas, N.; Bouillon, A.; Rault, S. Tetrahedron 2010, 66, 8121.
(b) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132,
14073, and references therein.
(3) For one isolated example using nickel-catalyzed denitrogenative
alkyne insertion of 1,2,3-benzotriazin-4(3H)-ones, see: Miura, T.; Yamau-
chi, M.; Murakami, M. Org. Lett. 2008, 10, 3085.
(4) Kawamoto, R. M.; U.S. Pat. Appl. Publ., 20070299086, 27 Dec
2007.
(5) Tyrrell, E.; Brookes, P. Synthesis 2004, 469.
(13) (a) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am.
Chem. Soc. 2011, 133, 2350. (b) Grohmann, C.; Wang, H.; Glorius, F.
Org. Lett. 2012, 14, 656. (c) Wang, H.; Glorius, F. Angew. Chem., Int. Ed.
2012, 51, 7318.
(14) For a review on mild C–H activation reactions, see, Wencel-
Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.
(15) (a) Dick, G. R.; Knapp, D. M.; Gillis, E. P.; Burke, M. D. Org.
Lett. 2010, 12, 2314. (b) Grob, J. E.; Nunez, J.; Dechantsreiter, M. A.;
Hamann, L. G. J. Org. Chem. 2011, 76, 10241.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6) For recent reviews on C–H activation: (a) Daugulis, O.; Do, H.-Q.;
Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (b) Colby, D. A.; Berg-
man, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (c) Lyons, T. W.;
Sanford, M. S. Chem. Rev. 2010, 110, 1147. (d) Newhouse, T.; Baran, P.
S. Angew. Chem., Int. Ed. 2011, 50, 3362. (e) Ackermann, L. Chem. Rev.
2011, 111, 1315. (f) McMurray, L.; O’Hara, F;. Gaunt, M. J. Chem. Soc.
Rev. 2011, 40, 1885. (g) Yeung, C. S.; Dong, V. M. Chem Rev. 2011, 111,
1215. (h) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. (i)
Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40,
5068. (j) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F.
Angew. Chem., Int. Ed. 2012, 51, 10236. (k) Engle, K. M.; Mei, T.-S.;
Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (l) Yamaguchi, J.;
Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
(7) For recent reviews on Rh(III)-catalyzed C–H activations, see: (a)
Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212. (b) Song, G.; Wang,
F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (c) Patureau, F. W.; Wencel-
Delord, J.; Glorius, F. Aldrichimica Acta 2012, 45, 31.
(8) For selected examples of Rh(III)-catalyzed annulation reactions
with alkynes see: (a) Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew.
Chem. Int. Ed. 2008, 47, 4019. (b) Stuart, D. R.; Bertrand-Laperle, M.;
Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474-
16475. (c) Guimond, N.; Fagnou, K. J. Am. Chem. Soc. 2009, 131, 12050
(d) Mochida, S.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Chem. Lett.
2010, 39, 744. (e) Too, P. C.; Wang, Y.-F.; Chiba, S. Org. Lett. 2010, 12,
5688. (f) Chen, J.; Song, G.; Pan, C.-L.; Li, X. Org. Lett. 2010, 12, 5426.
(g) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc.
2010, 132, 18326. (h) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am.
Chem. Soc. 2010, 132, 6908. (i) Hyster, T. K.; Rovis, T. J. Am. Chem.
Soc. 2010, 132, 10565 (j) Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am.
Chem. Soc. 2010, 132, 9585. (k) Miura: Fukutani, T.; Hirano, K.; Satoh,
T.; Miura, M. J. Org. Chem. 2011, 76, 2867. (l) Morimoto, K.; Hirano, K.;
Satoh, T.; Miura, M. Chem. Lett. 2011, 40, 600. (m) Umeda, N.; Hirano,
K.; Satoh, T.; Shibata, N.; Sato, H.; Miura, M. J. Org. Chem. 2011, 76, 13.
(n) Too, P. C.; Noji, T.; Lim, Y. J.; Li, X.; Chiba, S. Synlett 2011, 2789.
(o) Wang, Y.-F.; Toh, K. K.; Lee, J.-Y.; Chiba S. Angew. Chem., Int. Ed.
2011, 50, 5927. (p). Song, G.; Gong, X.; Li, X. J. Org. Chem. 2011, 76,
7583. (q) Wei, X.; Zhao, M.; Du, Z.; Li, X. Org. Lett. 2011, 13, 4636. (r)
Zhang, X.; Chen, D.; Zhao, M.; Zhao, J.; Jia, A.; Li, X. Adv. Synth. Catal.
2011, 353, 719. (s) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am.
Chem. Soc. 2011, 133, 6449. (t) Huestis, M. P.; Chan, L.; Stuart, D. R.;
Fagnou, K. Angew. Chem. Int. Ed. 2011, 50, 1338. (u) Hyster, T. K.;
Rovis, T. Chem. Commun. 2011, 47, 11846. (v) Hyster, T. K.; Rovis, T.
Chem. Sci. 2011, 2, 1606. (w) Patureau, F. W.; Besset, T.; Kuhl, N.;
Glorius, F. J. Am. Chem. Soc. 2011, 133, 2154. (x) Li, B.-J.; Wang, H.-Y.;
Zhu, Q.-L.; Shi, Z.-J. Angew. Chem., Int. Ed. 2012, 51, 3948. (y) Xu, X.;
Liu, Yu; Park, C.-M. Angew. Chem., Int. Ed. 2012, 51, 9372. (z) Pham,
M.; Ye, B.; Cramer, N. Angew. Chem. Int. Ed. 2012, 51, 10610-10614.
(9) (a) Joule, J. A.; Mills, K., Heterocyclic Chemistry, 5th ed.; Wiley-
Blackwell: West Sussex, United Kingdom, 2010. (b) Eicher, T.; Haupt-
mann, S.; Speicher, A. The Chemistry of Heterocycles: Structure, Reac-
tions, Syntheses, and Applications, 2nd ed.; Wiley-VCH GmbH &Co.
KGaA: Weinheim, Germany, 2003.
(16) 2a is commercially available from Sigma-Aldrich, for the applica-
tion of 2a in synthesis, see: (a) Struble, J. R.; Lee, S. J.; Burke, M. D.
Tetrahedron 2010, 66, 4710. (b) Chana, J. M. W.; Amarantea, G. W.;
Toste, F. D. Tetrahedron 2011, 67, 4306.
(17) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2008, 130, 14084.
(18) Copper promoted dimerization of terminal alkynes is known as
Glaser coupling, see recent examples: a) K. Balaraman, V. Kesavan,
Synthesis 2010, 3461; b) A.-C. Bédard, S. K. Collins, J. Am. Chem. Soc.
2011, 133, 19976.
(19) Cu(OAc)2 may help to regenerate the active Rh(III) catalyst from
deactivated Rh species such as Rh(I) complexes .
(20) Kuhl, N.; Hopkinson, M. N.; Glorius, F. Angew. Chem., Int. Ed.
2012, 51, 8230.
(21) See similar results while m-OMe substituted substrates were used
in C–H activation reactions: (a) Li, L.; Brennessel, W. W.; Jones, W. D.
Organometallics 2009, 28, 3492. (b) Ng, K -H.; Zhou, Z.; Yu, W. -Y.
Org. Lett. 2012, 14, 27.
(22) For short reviews, see: (h) Tobisu, M.; Chatani, N. Angew. Chem.,
Int. Ed. 2009, 48, 3565. (i) Wang, C.; Glorius, F. Angew. Chem., Int. Ed.
2009, 48, 5240.
(23) For C-H functionalization using terminal alkynes as coupling part-
ner, see ref 8s and Martin, R. M.; Bergman, R. G.; Ellman, J. A. J. Org.
Chem. 2012, 77, 2501.
(24) Guimond and Fagnou reported the use of alkyl-substituted termi-
nal alkyne delivering 3-alkyl monosubstituted isoquinolone in their reac-
tion. However, the use of phenylacetylene gave no corresponding desired
product. See ref 8s for detail.
(25) Control experiments indicate that remaining Cu(OAc)2 and
CsOPiv are the main factors responsible for the low efficiency of the
Suzuki-Miyaura coupling in this one-pot process. See SI for more details.
(26) Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51,
3066.
(27) Li, L.; Jiao, Y. Z.; Brennessel, W. W.; Jones, W. D.
Organometallics 2010, 29, 4593.
(28) Xu, L.; Zhu, Q.; Huang, G.; Cheng, B.; Xia, Y. J. Org. Chem.
2012, 77, 3017.
(29) 2d was synthesized efficiently by a Sonogashira coupling reaction,
see supporting information for details.
(30) For recent applications: (a) Smithen, D. A.; Baker, A. E. G.; Off-
man, M.; Crawford, S. M.; Cameron, T. S.; Thompson, A. J. Org. Chem.
2012, 77, 3439. (b) Asano, S.; Kamioka, S.; Isobe, Y. Tetrahedron 2012,
68, 272.
(31) Similar to the use of boronate 2b (Table 1, entry 8), the coupling
of 1-heptynylboronic acid pinacol ester with 6 under otherwise identical
reaction conditions gave no corresponding product. Instead, the dimeriza-
tion of the alkynylboronate resulted in the formation of the 1,3-diyne,
together with the recovery of 6.
(32) For a similar switch of regioselectivity when TMS substituted al-
kynes were used as coupling partners, see ref 8g.
(33) For recent applications: (a) Reilly, M. K.; Rychnovsky, S. D. Syn-
lett 2011, 2392. (b) Thakur, A.; Zhang, K.; Louie, J. Chem. Commun.
2012, 48, 203.
(10) (a) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716.
(b) Lee, S. J.; Gray, K. C.; Paek, J. S.; Burke, M. D. J. Am. Chem. Soc.
2008, 130, 466. (c) Uno, B. E.; Gillis, E. P.; Burke, M. D. Tetrahedron
2009, 65, 3130. (d) Ballmer, S. G.; Gillis, E. P.; Burke, M. D. Org. Synth.
2009, 86, 344. (e) Gillis, E. P.; Burke, M. D. Aldrichimica Acta 2009, 42,
17. (f) Lee, S. J.; Anderson, T. M.; Burke, M. D. Angew. Chem., Int. Ed.
2010, 49, 8860. (g) Dick, G. R.; Woerly, E. M.; Burke, M. D. Angew.
Chem., Int. Ed. 2012, 51, 2667. For another class of protected boron
reagents, see: (h) Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc.
2007, 129, 758.
ACS Paragon Plus Environment