10.1002/anie.202108120
Angewandte Chemie International Edition
RESEARCH ARTICLE
15257-15262; n) C. Qin, P. Feng, Y. Ou, T. Shen, T. Wang, N. Jiao, Angew.
Chem. Int. Ed. 2013, 52, 7850-7854; o) Z.-Q. Lei, F. Pan, H. Li, Y. Li, X.-S.
Zhang, K. Chen, X. Wang, Y.-X. Li, J. Sun, Z.-J. Shi, J. Am. Chem. Soc.
2015, 137, 5012-5020; p) S. K. Murphy, J.-W. Park, F. A. Cruz, V. M. Dong,
Science 2015, 347, 56-60; q) J. B. Roque, Y. Kuroda, L. T. Göttemann, R.
Sarpong, Science 2018, 361, 171-174; r) M. Brendel, P. R. Sakhare, G.
Dahiya, P. i. Subramanian, K. P. Kaliappan, J. Org. Chem. 2020, 85, 8102-
8110.
Key for this effective step is the formation of a high energy
intermediate (unsaturated β-lactam), which releases the ring
strain by C-C migration to make the overall reaction
thermodynamically feasible. From a synthetic standpoint, this new
transformation presents a practical strategy for the synthesis of
α,β-unsaturated piperidones utilizing easily available propargylic
alcohols and aliphatic amines directly as robust surrogates. Under
optimal conditions, diverse α,β-unsaturated piperidones were
achieved in a fast and step-economic way, without need for
isolation of intermediates. In fact, 40 out of 41 here prepared
molecules have not been described before to the best of our
knowledge. We believe this methodology also provides inspiration
for conceptually new synthetic approaches complementing
conventional organic synthesis.
[3] For some selected examples on C–C double bond cleavage, see: a) R.
Criegee, Angew. Chem. Int. Ed. 1975, 14, 745-752; b) R. H. Grubbs, S. J.
Miller, G. C. Fu, Acc. Chem. Res. 1995, 28, 446-452; c) T. Takemori, A.
Inagaki and H. Suzuki, J. Am. Chem. Soc. 2001, 123, 1762-1763; d) B. R.
Travis, R. S. Narayan, B. J. Borhan, J. Am. Chem. Soc. 2002, 124, 3824-
3825; e) J. W. Boer, J. Brinksma, W. R. Meetsma, A. Browne, P. L. Alsters,
R. Hage, B. L. Feringa, J. Am. Chem. Soc. 2005, 127, 7990-7991; f) K.
Miyamoto, N. Tada, M. Ochiai, J. Am. Chem. Soc. 2007, 129, 2772-2773; g)
A. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450, 243-251; h) T. Wang, N.
Jiao, J. Am. Chem. Soc. 2013, 135, 11692-11695; i) M. Hu, R.-J. Song, J.-
H. Li, Angew. Chem. Int. Ed. 2015, 54, 608-612; j) Z. Wu, R. Ren, C. Zhu,
Angew. Chem. Int. Ed. 2016, 55, 10821-10824; k) X. Tang, A. Studer, Angew.
Chem. Int. Ed. 2018, 57, 814-817; l) K. M. Nakafuku, S. C. Fosu, D. A. Nagib,
J. Am. Chem. Soc. 2018, 140, 11202-11205; m) Y. Liu, J. Xiong, L. Wei, J.-
P. Wan, Adv. Synth. Catal. 2020, 362, 877-883.
Acknowledgements
This work is supported by the state of Mecklenburg-Western
Pommerania and the BMBF (Bundesministerium für Bildung und
Forschung) in Germany. We thank the analytical team of LIKAT,
and Dr. Christoph Kubis for the support of 13CO. Fei Ye thanks
the National Natural Science Foundation of China (No. 21801056)
for financial support. Dedicated to Professor Dr. Christian
Bruneau on the occasion of his birthday and excellent work in
organometallic catalysis.
[4] P. W. Jennings, L. L. Johnson, Chem. Rev. 1994, 94, 2241-2290.
[5] For some reviews, see: a) U. H. F. Bunz, L. Kloppenburg, Angew. Chem. Int.
Ed. 1999, 38, 478-481; b) A. Fürstner, C. Mathes, C. W. Lehmann, Chem.
Eur. J. 2001, 7, 5299-5317; c) U. H. F. Bunz, Acc. Chem. Res. 2001, 34,
998-1010; d) A. Fürstner, P. W. Davies, Chem. Commun. 2005, 2307-2306;
e) W. Zhang, J. S. Moore, Adv. Synth. Catal. 2007, 349, 93-120; f) H. Villar,
M. Frings, C. Bolm, Chem. Soc. Rev. 2007, 36, 55-66; g) P. H. Deshmukh,
S. Blechert, Dalton Trans. 2007, 2479-2491; h) X. Wu, M. Tamm, J. Org.
Chem. 2011, 7, 82-93; i) A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 2794-
2819; j) Y. Jin, Q. Wang, P. Taynton, W. Zhan, Acc. Chem. Res. 2014, 47,
1575-1586; k) M. Ortiz, C. Yu, Y. Jin, W. Zhang, Top. Curr. Chem. 2017, 375,
69-93.
Keywords: α,β-unsaturated piperidones • palladium • C≡C
cleavage • cascade carbonylation • alkynol • catalysis
[6] a) R. L. M. Chamberlin, D. C. Rosenfeld, P. T. Wolczanski, E. B. Lobkovsky,
Organometallics 2002, 21, 2724-2735; b) H. Adams, L. V. Y. Guio, M. J.
Morris, S. E. Spey, J. Chem. Soc. Dalton Trans. 2002, 2907-2915; c) J. M.
O’Connor, L. Pu, J. Am. Chem. Soc. 1990, 112, 9013-9015; d) N. Hayashi,
D. M. Ho, R. A. Pascal Jr, Tetrahedron Lett. 2000, 41, 4261-4264; e) G. A.
Cairns, N. Carr, M. Green, M. F. Mahon, Chem. Commun. 1996, 2431-2432;
f) B. P. Sullivan, R. S. Smythe, E. M. Kober, T. J. Meyer, J. Am. Chem. Soc.
1982, 104, 4701-4703; g) J. S. Figueroa, C. C. Cummins, J. Am. Chem. Soc.
2003, 125, 4020-4021; h) R. M. Moriarty, R. Penmasta, A. K. Awasthi, I.
Prakash, J. Org. Chem. 1988, 53, 6124-6125; i) Y. Sawaki, H. Inoue, Y.
Ogata, Bull. Chem. Soc. Jpn. 1983, 56, 1133-1138; j) Q. Jiang, A. Zhao, B.
Xu, J. Jia, X. Liu, C. Guo, J. Org. Chem. 2014, 79, 2709-2715.
[1] a) R. H. Crabtree, Chem. Rev. 1985, 85, 245-269; b) B. Rybtchinski, D.
Milstein, Angew. Chem. Int. Ed. 1999, 38, 870-883; c) A. de Meijere, Chem.
Rev. 2003, 103, 931-932; d) C.-H. Jun, Chem. Soc. Rev. 2004, 33, 610-618;
e) Y. Horino, Angew. Chem. Int. Ed. 2007, 46, 2144-2146; f) M. Rubin, M.
Rubina, V. Gevorgyan, Chem. Rev. 2007, 107, 3117-3179; g) L. J. Gooßen,
N. Rodríguez, K. Gooßen, Angew. Chem. Int. Ed. 2008, 47, 3100-3120; h)
M. Tobisu, N. Chatani, Chem. Soc. Rev. 2008, 37, 300-307; i) Y. J. Park, J.-
W. Park, C.-H. Jun, Acc. Chem. Res. 2008, 41, 222-234; j) C. Najera, J. M.
Sansano, Angew. Chem. Int. Ed. 2009, 48, 2452-2456; k) A. Masarwa, I.
Marek, Chem. Eur. J. 2010, 16, 9712-9721; l) M. Murakami, T. Matsuda,
Chem. Commun. 2011, 47, 1100-1105; m) F. Chen, T. Wang, N. Jiao, Chem.
Rev. 2014, 114, 8613-8661; n) C. Tang, N. Jiao, Angew. Chem. Int. Ed. 2014,
53, 6528-6532; o) W. Zhou, W. Fan, Q. Jiang, Y.-F. Liang, N. Jiao, Org. Lett.
2015, 17, 2542-2545; p) Q. Gao, S. Liu, X. Wu, J. Zhang, A. Wu, Org. Lett.
2015, 17, 2960-2963; q) L. Souillart, N. Cramer, Chem. Rev. 2015, 115,
9410-9464; r) S. Kollea, S. Batra, Org. Biomol. Chem. 2016, 14, 11048-
11060; s) A. P. Y. Chan, A. G. Sergeev, Coord. Chem. Rev. 2020, 413,
213213-213240.
[7] For Pd catalyzed reactions: a) A. Wang, H. Jiang, J. Am. Chem. Soc. 2008,
130, 5030-5031; b) Q. Liu, P. Chen, G. Liu, ACS Catal. 2013, 3, 178-181; c)
M.-B. Zhou, M.-Jia Luo, M. Hu, J.-H. Li, Chin. J. Chem. 2020, 38, 553-558.
For Au catalyzed reactions: d) A. Das, R. Chaudhuri, R.-S. Liu, Chem.
Commun. 2009, 4046-4048; e) Y. Liu, F. Song, S. Guo, J. Am. Chem. Soc.
2006, 128, 11332-11333; f) C. Qin, Y. Su, T. Shen, X. Shi, N. Jiao, Angew.
Chem. Int. Ed. 2016, 55, 350-354. For Ru catalyzed reactions: g) S. Datta,
C.-L. Chang, K.-L. Yeh, R.-S. Liu, J. Am. Chem. Soc. 2003, 125, 9294-9295;
h) T. Shimada, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 6646-6647; i)
R. Prakash, B. R. Bora, R. C. Boruah, S. Gogoi, Org. Lett. 2018, 20, 2297-
2300. For Rh catalyzed reactions: j) C.-H. Jun, H. Lee, C. W. Moon, H.-S.
Hong, J. Am. Chem. Soc. 2001, 123, 8600-8601; k) D.-Y. Lee, B.-S. Hong,
E.-G. Cho, H. Lee, C.-H. Jun, J. Am. Chem. Soc. 2003, 125, 6372-3673; l)
K.-M. Cha, E.-A. Jo, C.-H. Jun, Synlett 2009, 18, 2939-2942. For Cu
catalyzed reactions: m) J. Sun, F. Wang, H. Hu, X. Wang, H. Wu, Y. Liu, J.
Org. Chem. 2014, 79, 3992-3998; n) J. Sun, H. Hu, F. Wang, H. Wu, Y. Liu,
RSC Adv. 2014, 4, 36498-36501; o) X. Wang, D. He, Y. Huang, Q. Fan, W.
Wu, H. Jiang, J. Org. Chem. 2018, 83, 5458-5466. For Ag catalyzed
reactions: p) T. Shen, T. Wang, C. Qin, N. Jiao, Angew. Chem. Int. Ed. 2013,
52, 6677-6680.
[2] For some selected examples on C–C single bond cleavage, see: a) C.-H.
Jun, H. Lee, S.-G. Lim, J. Am. Chem. Soc. 2001, 123, 751-752; b) T.
Takahashi, Y. Kuzuba, F. Kong, K. Nakajima, Z. Xi, J. Am. Chem. Soc. 2005,
127, 17188-17189; c) C. He, S. Gou, L. Huang, A. Lei, J. Am. Chem. Soc.
2010, 132, 8273-8275; d) T. Seiser, N. Cramer, J. Am. Chem. Soc. 2010,
132, 5340-5341; e) A. Sattler, G. Parkin, Nature 2010, 463, 523-526; f) Y.
Hirata, A. Yada, E. Morita, Y. Nakao, T. Hiyama, M. Ohashin, S. Ogoshi, J.
Am. Chem. Soc. 2010, 132, 10070-10077; g) M. Waibel, N. Cramer, Angew.
Chem. Int. Ed. 2010, 49, 4455-4560; h) H. Li, Y. Li, X.-S. Zhang, K. Chen, X.
Wang, Z.-J. Shi, J. Am. Chem. Soc. 2011, 133, 15244-15247; i) H. Li, W. Li,
W. Liu, Z. He, Z. Li, Angew. Chem. Int. Ed. 2011, 50, 2975-2978; j) M. Baidya,
H. Yamamoto, J. Am. Chem. Soc. 2011, 133, 13880-13882; k) P. Hu, M.
Zhang, X. Jie, W. Su, Angew. Chem. Int. Ed. 2012, 51, 227-231; l) M. Tobisu,
H. Kinuta, Y. Kita, E. Remond, N. Chatani, J. Am. Chem. Soc. 2012, 134,
115-118; m) C. Zhang, P. Feng, N. Jiao, J. Am. Chem. Soc. 2013,135,
[8] a) L. Raj, T. Ide, A. U. Gurkar, M. Foley, M. Schenone, X. Li, N. J. Tolliday,
T. R. Golub, S. A. Carr, A. F. Shamji, A. M. Stern, A. Mandinova, S. L.
6
This article is protected by copyright. All rights reserved.