LETTER
Greener Protocol for 2,3-Dihydro/spiroquinazolin-4(1H)-ones
2213
49, 3814. (j) Chen, J.; Su, W.; Wu, H.; Liu, M.; Jin, C. Green
Chem. 2007, 9, 972. (k) Baghbanzadeh, M.; Salehi, P.;
Dabiri, M.; Kozehgary, G. Synthesis 2006, 344. (l) Yoo, C.
L.; Fettinger, J. C.; Kurth, M. J. J. Org. Chem. 2005, 70,
6941. (m) Dabiri, M.; Salehi, P.; Otokesh, S.;
Baghbanzadeh, M.; Kozehgarya, G.; Mohammadi, A. A.
Tetrahedron Lett. 2005, 46, 6123. (n) Shi, D. Q.; Rong, L.
C.; Wang, J. X.; Zhuang, Q. Y.; Wang, X. S.; Hu, H. W.
Tetrahedron Lett. 2003, 44, 3199. (o) Khurana, J. M.;
Kukreja, G. J. Heterocycl. Chem. 2003, 40, 677. (p) Su, W.
K.; Yang, B. B. Aust. J. Chem. 2002, 55, 695.
and amines with the shortest reaction time reported so far
at ambient temperature besides obtaining high yields. Fur-
ther, it was extended to the synthesis of spiro compounds
as well. Thus the developed methodology provides oppor-
tunity for the construction of diverse bioactive molecules
with numerous other advantages such as: (1) theoretically,
this combination of MCR (multicomponent reaction)
spans a chemical space of greater than 1000 × 1000 × 100
= 108 molecules,12 (2) high bond-forming efficiency13 as
three C–N bonds are formed, (3) economic methodology
which offers a great possibility for applications in indus-
try,14 (4) use of water–ethanol mixture as green solvent
and (5) simple purification process/clean synthesis.
(7) (a) Beyer, M. K.; Clausen-Schaumann, H. Chem. Rev. 2005,
105, 2921. (b) Choudhary, G.; Peddinti, R. K. Green Chem.
2011, 13, 276. (c) Aakeroy, C. B.; Chopade, P. D. Org. Lett.
2011, 13, 1. (d) van den Ancker, T. R.; Cave, G. W. V.;
Raston, C. L. Green Chem. 2006, 8, 50. (e) Trask, A. V.;
Motherwell, W. D. S.; Jones, W. Chem. Commun. 2004, 890.
(f) Cave, G. W. V.; Raston, C. L. Chem. Commun. 2000,
2199.
(8) (a) Rosati, F.; Oelerich, J.; Roelfes, G. Chem. Commun.
2010, 46, 7804. (b) Scott, J. L.; Raston, C. L. Green Chem.
2000, 2, 245. (c) Molteni, G.; Ponti, A.; Orlandi, M. New J.
Chem. 2002, 26, 1340. (d) Chiba, K.; Jinno, M.; Nozaki, A.;
Tada, M. Chem. Commun. 1997, 1403. (e) Kobayashi, S.;
Busujima, T.; Nagayama, S. Chem. Commun. 1998, 19.
(9) (a) Miyake, H.; Nakaob, Y.; Sasaki, M. Tetrahedron Lett.
2006, 47, 6247. (b) Zhou, B.; Yang, J.; Li, M.; Gu, Y. Green
Chem. 2011, 13, 2204.
Acknowledgment
The authors thank the Council of Scientific and Industrial Research,
India for financial support, for the award of senior research fellow-
ship and the S.A.I.F. division, CDRI, Lucknow, for providing
spectroscopic data. CDRI communication number is 8280.
References
(1) (a) Baird, C. Environmental Chemistry; W. H. Freeman and
Company: New York, 1999. (b) Anastas, P.; Heine, L. G.;
Williamson, T. C. Green Chemical Syntheses and
Processes; Oxford University Press: New York, 2000.
(c) Matlack, A. S. Introduction to Green Chemistry; Marcel
Dekker: New York, 2001. (d) Lancaster, M. Green
Chemistry: An Introductory Text; Royal Society of
Chemistry: Cambridge, 2002.
(2) (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory
and Practice; Oxford University Press: Oxford, 1998.
(b) Bruckmann, A.; Krebs, A.; Bolm, C. Green Chem. 2008,
10, 1131. (c) Horvath, I. T. Green Chem. 2008, 10, 1024.
(d) Handbook of Green Chemistry; Crabtree, R. H.; Anastas,
P. T., Eds.; Wiley-VCH: Weinheim, 2009.
(10) Representative Procedure:
Method A: In a round-bottom flask, isatoic anhydride
(0.1 g, 0.61 mmol) and amine (0.61 mmol) were dissolved in
micellar solution of H2O–EtOH (3:1; 4 mL) sensitized with
SDS (20 mol%). Tartaric acid (0.92 g, 0.61 mmol) and
aldehyde/ketone (0.61 mmol) were then successively added
and the reaction was allowed to stir at r.t. for an appropriate
time indicated in Tables 2–4. The solid precipitate was
filtered, washed with H2O, dried and could be used without
further purification, however in case of 4r, 4s and 4t
recrystallization with EtOH–ice was required.
Method B: isatoic anhydride (0.1 g, 0.61 mmol) and amine
(0.61 mmol) were mixed with a few drops of the solvent
system (H2O–EtOH, 3:1) in a mortar. Tartaric acid (0.92 g,
0.61 mmol), SDS (20 mol%) and aldehyde/ketone (0.61
mmol) were then successively added and ground together
with a pestle until completion of the reaction (Tables 2–4).
In most of the cases the product was washed with H2O,
however in case of 4r–t recrystallization with EtOH–ice was
required.
3-Butyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (4a):
colorless solid; yield: 0.15 g (87%); mp 132–135 °C. 1H
(300 MHz, CDCl3): δ = 7.88 (d, 1 H, J = 6.9 Hz), 7.21 (br s,
4 H), 7.13–7.19 (m, 2 H), 6.76 (t, 1 H, J = 7.3 Hz), 6.44 (d,
1 H, J = 8.0 Hz), 5.76 (s, 1 H), 3.85–3.94 (m, 1 H), 2.64–2.74
(m, 1 H), 1.45–1.49 (m, 2 H), 1.20–1.27 (m, 2 H), 0.80 (t, 3
H, J = 7.3 Hz).13C (50 MHz, CDCl3): δ = 163.2, 145.2, 140.0,
133.4, 129.2, 128.9, 128.4, 126.5, 119.1, 116.2, 114.4,
72.1, 44.6, 29.8, 20.2, 13.8. IR (KBr): 3360, 1634 cm–1.
MS (ES+): m/z = 281.1 [M+ + 1]. HRMS (DART): m/z calcd
for [C18H20N2O + H+]: 281.1654; found: 281.1647.
3-Butyl-2-ferrocenyl-2,3-dihydroquinazolin-4(1H)-one
(4q): yellow solid; yield: 0.17 g (72%); mp 137–140 °C. 1H
NMR (300 MHz, CDCl3): δ = 7.83 (d, 1 H, J = 7.4 Hz), 7.19–
7.27 (m, 1 H), 6.79 (t, 1 H, J = 7.4 Hz), 6.64 (d, 1 H, J = 6.9
Hz), 5.40 (s, 1 H), 4.08–4.21 (m, 10 H), 3.75–3.79 (m, 1 H),
2.88–2.92 (m, 1 H), 1.42–1.50 (m, 2 H), 1.19–1.28 (m, 2 H),
0.82 (t, 3 H, J = 7.5 Hz). 13C NMR (50 MHz, CDCl3): δ =
162.7, 146.4, 133.3, 128.7, 119.3, 116.5, 113.9, 88.6, 73.3,
(3) (a) Liverton, N. J.; Armstrong, D. J.; Claremon, D. A.;
Remy, D. C.; Baldwin, J. J.; Lynch, R. J.; Zhang, G.; Gould,
R. J. Bioorg. Med. Chem. Lett. 1998, 8, 483. (b) Zhang, W.;
Mayer, J. P.; Hall, S. E.; Weigel, J. A. J. Comb. Chem. 2001,
3, 255.
(4) Abdel-Jalil, R. J.; Voelter, W.; Saeed, M. Tetrahedron Lett.
2004, 45, 3475.
(5) (a) Maia, R. C.; Silva, L. L.; Mazzeu, E. F.; Fumian, M. M.;
de Rezende, C. M.; Doriguetto, A. C.; Correa, R. S.;
Miranda, A. L. P.; Barreiro, E. J.; Fraga, C. A. M. Bioorg.
Med. Chem. 2009, 17, 6517. (b) Jalali-Heravi, M.;
Asadollahi-Baboli, M. Eur. J. Med. Chem. 2009, 44, 1463.
(c) Maskey, R. P.; Shaaban, M.; Grun-Wollny, I.; Laatsch,
H. J. Nat. Prod. 2004, 67, 1131.
(6) (a) Gao, L.; Ji, H.; Rong, L.; Tang, D.; Zha, Y.; Shi, Y.; Tu,
S. J. Heterocycl. Chem. 2011, 48, 957. (b) Niknam, K.;
Jafarpour, N.; Niknam, E. Chin. Chem. Lett. 2011, 22, 69.
(c) Ghorbani-Choghamarani, A.; Taghipour, T. Lett. Org.
Chem. 2011, 8, 470. (d) Zeng, L. Y.; Cai, C. J. Heterocycl.
Chem. 2010, 47, 1035. (e) Zhang, Z. H.; Lu, H. Y.; Yang, S.
H.; Gao, J. W. J. Comb. Chem. 2010, 12, 643.
(f) Rostamizadeh, S.; Amani, A. M.; Mahdavinia, G. H.;
Sepehrian, H.; Ebrahimi, S. Synthesis 2010, 1356.
(g) Shaterian, H. R.; Oveisi, A. R.; Honarmand, M. Synth.
Commun. 2010, 40, 1231. (h) Dabiri, M.; Salehi, P.;
Baghbanzadeh, M.; Zolfigol, M. A.; Agheb, M.; Heydari, S.
Catal. Commun. 2008, 9, 785. (i) Chen, J.; Wu, D.; He, F.;
Liu, M.; Wu, H.; Ding, J.; Su, W. Tetrahedron Lett. 2008,
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 2209–2214