Page 5 of 5
Journal of the American Chemical Society
Buffeteau, T.; Cavagnat, D.; Chénedé, A. Angew. Chem., Int. Ed.
(10) For recent selected examples of asymmetric construc-
tion of all carbon quaternary center via non-oxidative dearomati-
zation, see; (a) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006,
128, 6314. (b) García-Fortanet, J.; Kessler, F.; Buchwald, S. L. J. Am.
Chem. Soc. 2009, 131, 6676. (b) Rousseaux, S.; García-Fortanet, J.;
Del Aguila Sanchez, M. A.; Buchwald, S. L. J. Am. Chem. Soc. 2011,
133, 9282. (c) Wu, Q.-F.; He, H.; Liu, W.-B.; You, S.-L. J. Am. Chem.
Soc. 2010, 132, 11418. (d) Leon, R.; Jawalekar, A.; Redert, T.;
Gaunt, M. J. Chem. Sci., 2011, 2, 1487. (e) Wu, Q.-F.; Liu, W.-B.;
Zhuo, C.-X.; Rong, Z.-Q.; Ye, K.-Y.; You. S.-L. Angew. Chem., Int. Ed.
2011, 50, 4455. (f) Wu, K.-J.; Dai, L.-X.; You, S.-L. Org. Lett. 2012,
14, 3772. (g) Qi, J.; Beeler, A. B.; Zhang, Q.; Porco, J. A., Jr. J. Am.
Chem. Soc. 2010, 132, 13642. (h) Yoshida, M.; Nemoto, T.; Zhao, Z.;
Ishige, Y.; Hamada, Y. Tetrahedron: Asymmetry, 2012, 23, 859
(11) It has been reported that AOD/[4+2] dimerization and
OD/asymmetric Michael reaction tandems provide a product
having all carbon quaternary center with high enantioselectivity
(Ref. 2b and 2g).
2009, 48, 4605. (e) Uyanik, M.; Yasui, T.; Ishihara, K. Angew.
Chem., Int. Ed. 2010, 49, 2175.(f) Boppisetti, J. K.; Birman, V. B.
Org. Lett. 2009, 11, 1221. (g) Vo, N. T.; Pace, R. D. M.; O'Hara, F.;
Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 404. (h) Mejorado, L. H.;
Pettus, T. R. R. J. Am. Chem. Soc. 2006, 128, 15625.
1
2
3
4
5
6
7
8
(3)
Anodic oxidative aromatic ring umpolung/asymmetric
Michael addition has been reported, though the products are ar-
omatic compounds. See; Jensen, K. L.; Franke, P. T.; Nielsen, L. T.;
Daasbjerg, K.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2010, 49,
129.
9
(4)
Feringa, B. L. Angew. Chem., Int. Ed. 2011, 50, 5834.
(5) (a) Boll, M. J. Mol. Microbiol Biotechnol, 2005, 10, 132.
Rudolph, A.; Bos, P. H.; Meetsma, A.; Minnaard, A. J.;
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(b) Ferraro, D. J.; Gakhar, L.; Ramaswamy S. Biochem. Biophys. Res.
Commun. 2005, 338, 175.
(6)
Reviews on iron-catalyzed reaction; (a) Correa, A.;
Mancheño, O. G.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108. (b)
Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217.
(12) Metal-Catalyzed Cross-coupling Reactions, Ed by
Diederich, F.; Stang, P. J. Wiley-VCH, Weinheim, 1997.
(7)
For reviews on the use of O2 as the oxidant, see: (a)
Podgoršek, A.; Zupan, M.; Iskra, J. Angew. Chem., Int. Ed. 2009, 48,
8424. (b) Sheldon, R. A.; Arends, I. W. C. E. In Advances in catalytic
activation of dioxygen by metal complexes; Simandi, L. I., Ed.;
Kluwer Academic: Dordrecht, 2003, p123.
(13) It has been reported that 1-alkyl-2-naphthols undergo
autoxidation in air or oxygen at room temperature to give 7
and/or 8. Carnduff, J.; Leppard, D. G. J. Chem. Soc., Perkin Trans. 1,
1976, 2570.
(14) CCDC 904096 for 6f and 904097 for 10 contain the
supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
(15) For details, see SI.
(8)
(a) Egami, H.; Katsuki, T. J. Am. Chem. Soc. 2009, 131,
6082. (b) Egami, H.; Matsumoto, K.; Oguma, T.; Kunisu, T.; Katsuki,
T. J. Am. Chem. Soc. 2010, 132, 13633. (c) Matsumoto, K.; Egami, H.
Oguma, T.; Katsuki, T. Chem. Commun. 2012, 48, 5823. (d) Kunisu,
T.; Oguma, T. J. Am. Chem. Soc. 2011, 133, 12937.
(9)
(a) Hovorka, M.; Günterová, J.; Závada, J. Tetrahedron
(16) For an intramolecular version; see ref. 4.
Lett. 1990, 31, 413. (b) Hovorka, M.; Závada, J. Tetrahedron, 1992,
48, 9517.
ACS Paragon Plus Environment