Crystal Growth & Design
Article
(10) Dias, H. V. R.; Diyabalanage, H. V. K. Polyhedron 2006, 25,
1665−1661.
tion. Clearly, for Ag3···halogen interactions to dominate, the
other substituents need to induce sufficient π-acidity to the Ag3-
core. When this is not the case, as in complex 5, no acid−base
interactions are observed.
Germane to this is the observation that in a thallium-
trispyrazolylborate system, the substitution at the pyrazole 3-
position influences the length of intermolecular Tl−Tl, closed
shell contacts.32 A detailed study of the effect of pyrazole
peripheral substitution on the strength of metallophilic
interactions is still lacking.
(11) Dias, H. V. R.; Gamage, C. S. P.; Keltner, J.; Diyabalanage, H. V.
K.; Omari, I.; Eyobo, Y.; Dias, N. R.; Roehr, N.; McKinney, L.; Poth,
T. Inorg. Chem. 2007, 46, 2979−2987.
(12) Fujisawa, K.; Ishikawa, Y.; Miyashita, Y.; Okamoto, K. Inorg.
Chim. Acta 2010, 363, 2977−2989.
(13) Meyer, F.; Jacobi, A.; Zsolnai, L. Chem. Ber. 1997, 130, 1441−
1447.
(14) Krishantha, D. M. M.; Gamage, C. S. P.; Schelly, Z. A.; Dias, H.
V. R. Inorg. Chem. 2008, 47, 7065−7067.
(15) Tekarli, S. M.; Cundari, T. R.; Omary, M. A. J. Am. Chem. Soc.
2008, 130, 1669−1675.
ASSOCIATED CONTENT
* Supporting Information
■
(16) Dias, H. V. R.; Gamage, C. S. P. Angew. Chem., Int. Ed. 2007, 46,
2192−2194.
S
ORTEP diagrams, tables of interatomic distances and angles for
1−5 and packing diagrams for 3-Au and 5. This information is
(17) Tsupreva, V. N.; Titov, A. A.; Filippov, O. A.; Bilyachenko, A.
N.; Smol’yakov, A. F.; Dolgushin, F. M.; Agapkin, D. V.; Godovikov, I.
A.; Epstein, L. M.; Shubina, E. S. Inorg. Chem. 2011, 50, 3325−3331.
(18) Mohamed, A. A.; Rawashdeh-Omary, M. A.; Omary, M. A.;
Fackler, J. P., Jr. Dalton Trans. 2005, 2597−2602.
(19) Burini, A.; Bravi, R.; Fackler, J. P., Jr.; Galassi, R.; Grant, T. A.;
Omary, M. A.; Pietroni, B. R.; Staples, R. J. Inorg. Chem. 2000, 39,
3158−3156.
AUTHOR INFORMATION
Corresponding Author
■
(20) Burini, A.; Fackler, J. P., Jr.; Galassi, R.; Grant, T. A.; Omary, M.
A.; Rawashdeh-Omary, M. A.; Pietroni, B. R.; Staples, R. J. J. Am.
Chem. Soc. 2000, 122, 11264−11265.
(21) Rawashdeh-Omary, M. A.; Omary, M. A.; Fackler, J. P., Jr.;
Galassi, R.; Pietroni, B. R.; Burini, A. J. Am. Chem. Soc. 2001, 123,
9689−9691.
Present Addresses
#College of Chemistry and Molecular Engineering, Zhengzhou
University, Zhengzhou, 450001 China.
§Department of Chemistry, Juniata College, Huntingdon, PA
16652, USA.
Notes
(22) Burini, A.; Fackler, J. P.; Galassi, R.; Macchioni, A.; Omary, M.
A.; Rawashdeh-Omary, M. A.; Pietroni, B. R.; Sabatini, S.; Zuccaccia,
C. J. Am. Chem. Soc. 2002, 124, 4570−4571.
The authors declare no competing financial interest.
(23) Olmstead, M. M.; Jiang, F.; Attar, S.; Balch, A. L. J. Am. Chem.
Soc. 2001, 123, 3260−3267.
ACKNOWLEDGMENTS
■
This work has been supported by the National Aeronautics and
Space Administration (Grants NNX09AV05A and
NNX08BA48A), the National Science Foundation (HRD-
0833112), and the Institute for Functional Nanomaterials-UPR.
Y.G. acknowledges a grant from the National Science
Foundation of China (#21071126).
́
(24) Badjic, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.;
Stoddart, J. F. Acc. Chem. Res. 2005, 38, 723−732.
(25) Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati. Acc. Chem. Res.
2005, 38, 386−395.
́ ̌
(26) Zueva, E. M.; Petrova, M. M.; Herchel, R.; Travnícek, Z.; Raptis,
R. G.; Mathivathanan, L.; McGrady, J. E. Dalton Trans. 2009, 5924−
5932.
(27) Trofimenko, S.; Calabrese, J. C.; Thompson, J. S. Inorg. Chem.
REFERENCES
■
1987, 26, 1507−1514.
(1) (a) Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4763−4768.
(b) Turro, N. J. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10766−10770.
(c) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629−1658.
(28) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112−122.
(29) Raptis, R. G.; Fackler, J. P., Jr. Inorg. Chem. 1988, 27, 4179−
4182.
(2) (a) Pyykko, P. Chem. Rev. 1997, 97, 597−636. (b) Schmidbaur,
̈
(30) Hou, L.; Shi, W.-J.; Wang, Y.-Y.; Wang, H.-H.; Cui, L.; Chen, P.-
X.; Shi, Q.-Z. Inorg. Chem. 2011, 50, 261−270.
(31) Zang, S.-Q.; Cheng, P.-S.; Mak, T. C. W. CrystEngComm 2009,
11, 1061−1067.
(32) Gosh, P.; Rheingold, A. L.; Parkin, G. Inorg. Chem. 1999, 38,
5464−5467.
H. Gold Bull. 2000, 33, 3−10. (c) Jahnke, A. C.; Propper, K.; Bronner,
̈
C.; Teichgraber, J.; Dechert, S.; John, M.; Wenger, O. S.; Meyer, F. J.
̈
Am. Chem. Soc. 2012, 134, 2938−2941.
(3) Henkelis, J. J.; Kilner, C. A.; Halcrow, M. A. Chem. Commun.
2011, 47, 5187−5189.
(4) (a) Mohamed, A. A. Coord. Chem. Rev. 2010, 254, 1918−1947.
(b) Burini, A.; Mohamed, A. A.; Fackler, J. P. Comments Inorg. Chem.
2003, 24, 253−280. (c) Gao, G.-F.; Li, M.; Zhan, S.-Z.; Lv, Z.; Chen,
G.; Li, D. Chem.Eur. J. 2011, 17, 4113−4117. (d) Halcrow, M. A.
Dalton Trans. 2009, 2059−2073.
(5) Yang, G.; Raptis, R. G. Inorg. Chem. 2003, 42, 261−263.
(6) (a) Kim, S. J.; Kang, S. H.; Park, K.-M.; Kim, H.; Zin, W.-C.;
Choi, M.-G.; Kim., K. Chem. Mater. 1998, 10, 1889−1893.
(b) Torralba, M. C.; Ovejero, P.; Mayoral, M. J.; Cano, M.; Campo,
J. A.; Heras, J. V.; Pinilla, E.; Torres, M. R. Helv. Chim. Acta 2004, 87,
250−263. (c) Lintang, H. O.; Kinbara, K.; Yamashita, T.; Aida, T.
Chem. Asian J. 2012, 7, 2068−2072.
(7) Murray, H. H.; Raptis, R. G.; Fackler, J. P., Jr. Inorg. Chem. 1988,
27, 26−33.
́
(8) Mohamed, A. A.; Perez, L. M.; Fackler, J. P., Jr. Inorg. Chim. Acta
2005, 358, 1657−1662.
(9) Masciocchi, N.; Moret, M.; Cairati, P.; Sironi, A.; Ardizzoia, G. A.;
La Monica, G. J. Am. Chem. Soc. 1994, 116, 7668−7676.
F
dx.doi.org/10.1021/cg301411j | Cryst. Growth Des. XXXX, XXX, XXX−XXX