K. Vamshikrishna, P. Srihari / Tetrahedron: Asymmetry 23 (2012) 1584–1587
1587
molecular I2 (0.40 g, 1.59 mmol, 2.2 equiv) at 0 °C. The reaction
mixture was then stirred at the same temperature for 15 min, after
which the reaction mixture was allowed to warm to room temper-
ature, and stirred at room temperature for 2 h. After completion of
the reaction (monitored by TLC) the reaction mixture was
quenched with a saturated aq. Na2S2O3 ꢃ5H2O solution. The organic
layer was separated and the aqueous layer was extracted with
CH2Cl2 (2 ꢁ 10 mL). The combined organic layer was washed with
brine (5 mL), and dried over anhydrous Na2SO4. The solvent was
removed under reduced pressure to give a crude material, which
was purified by column chromatography Rf 0.80 (hexane-EtOAc,
(5 mL) and dried over anhydrous Na2SO4. The solvent was evapo-
rated under reduced pressure to give a crude product, which was
purified by column chromatography Rf 0.30 (hexane-EtOAc,
20:80) to give (ꢀ)-varitriol 10 (0.013 g, 65%) as a white solid; mp
102–104 °C, ½a 2D5
ꢂ
¼ ꢀ29:2 (c 0.7, MeOH); lit.4a
½ ꢂ ¼ ꢀ18:2 (c
a rDt
0.0033 g mlꢀ1, MeOH); IR tmax (KBr): 3405, 2926, 1469, 1249,
1094 cmꢀ1 1H NMR (300 MHz, acetone-d6): d 7.22 (t, J = 7.9 Hz,
;
1H), 7.15 (br s, 1H), 7.11 (d, J = 5.5, Hz, 1H), 6.89 (d, J = 8.1 Hz,
1H), 6.20 (dd, J = 6.6, 15.9 Hz, 1H), 4.70 (br s, 2H), 4.30-4.27 (m,
1H), 3.92–3.88 (m, 1H), 3.85–3.78 (m, 1H), 3.82 (s, 3H), 3.70–
3.67 (m, 1H), 1.26 (d, J = 6.4 Hz, 3H); 13C NMR (75 MHz, acetone-
d6): d 159.9, 139.9, 133.4, 130.3, 130.2, 128.9, 120.3, 111.6, 86.3,
80.9, 78.1, 77.4, 57.0, 56.4, 20.5; ESIMS: m/z 303 [M+Na]+; HRE-
SIMS: m/z 303.1197 [M+Na]+ (calcd for C15H20O5Na: m/z
303.1208).
60:40) to give 11 (0.25 g, 75%) as a colorless oil; ½a D25
¼ ꢀ39:6 (c
ꢂ
6.3, CHCl3); IR tmax (Neat): 2927, 1731, 1467, 1269, 1075 cmꢀ1
;
1H NMR (300 MHz, CDCl3): d 7.30 (t, J = 8.3 Hz, 1H) 7.12 (d,
J = 8.3 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 6.67 (d, J = 15.9 Hz, 1H),
6.23 (dd, J = 5.3, 15.9 Hz, 1H), 4.58–4.51 (m, 3H), 4.04-4.00 (m,
1H), 3.92 (s, 3H), 3.81 (s, 3H), 3.37–3.27 (m, 2H), 1.56 (s, 3H),
1.34 (s, 3H); 13C NMR (75 MHz, CDCl3): d 168.2, 156.4, 135.0,
130.4, 130.0, 128.6, 122.8, 117.9, 114.7, 110.2, 85.2, 85.1, 85.0,
83.0, 55.9, 52.4, 27.2, 25.4, 6.9; ESIMS: m/z 475 [M+H]+; HRESIMS:
m/z 475.0634 [M+H]+ (calcd for C19H24O6I: m/z 475.0617).
Acknowledgments
VK thanks the CSIR, New Delhi for financial assistance. PSH
thanks the Department of Science & Technology (DST) for financial
assistance under SERC FAST Track Scheme no. SR/FT/CS-036/2009,
GAP-0284. The authors thank Dr. J. S. Yadav, CSIR Bhatnagar fellow
for his kind encouragement.
4.2.6. (2-Methoxy-6-((E)-2-((3aS,4S,6R,6aR)-2,2,6-trimethyl-
tetrahydrofuro[3,4-d][1,3]dioxol-4-yl)vinyl)phenyl)methanol 2
To a solution of compound 11 (0.10 g, 0.21 mmol, 1 equiv) in
dry THF (3 mL) was added 1 M LiEt3BH (1.68 mL, 8 equiv) in THF
at ꢀ78 °C, over 10 min; then the reaction mixture was allowed to
warm to room temperature. After complete consumption of the
starting material, the reaction mixture was quenched with satu-
rated NaHCO3 (10 mL) at 0 °C followed by 30% H2O2 (3 mL) at
0 °C. The reaction mixture was then allowed to warm to room tem-
perature and stirred at the same temperature for 5 h. The organic
layer was separated and the aqueous layer was extracted with
EtOAc (2 ꢁ 5 mL). The combined organic layer was washed with
brine (5 mL), dried over anhydrous Na2SO4, and concentrated un-
der reduced pressure to give the product which was purified by
column chromatography Rf 0.35 (hexane-EtOAc, 50:50) to give 2
References
1. (a) Blunt, W. J.; Copp, R. B.; Munro, G. H. M.; Northcote, T. P.; Prinsep, R. M. J.
Nat. Prod. Rep. 2011, 28, 196–268; (b) Simmons, L. T.; Andrianasolo, E.; McPhail,
K.; Flatt, P.; Gerwick, H. W. Mol. Cancer Ther. 2005, 4, 333–342; (c) Faulkner, D. J.
Nat. Prod. Rep. 2000, 17, 7–55.
2. Malmstrom, J.; Christophersen, C.; Barrero, A. F.; Oltra, J. E.; Justicia, J.; Rosales,
A. J. Nat. Prod. 2002, 65, 364–367.
3. Mayer, A. M. S.; Gustafson, K. R. Eur. J. Cancer 2004, 40, 2676–2704.
4. (a) Clemens, R. T.; Jennings, M. P. Chem. Commun. 2006, 2720–2721; (b)
McAllister, G. D.; Robinson, J. E.; Taylor, R. J. K. Tetrahedron 2007, 63, 12123–
12130.
5. (a) Kumar, V.; Shaw, A. K. J. Org. Chem. 2008, 73, 7526–7531; (b) Palik, M.;
Karlubikova, O.; Lasikova, A.; Kozisek, J.; Gracza, T. Eur. J. Org. Chem. 2009, 709–
715; (c) Brichacek, M.; Batory, L. A.; McGrath, N. A.; Njardarson, J. T.
Tetrahedron 2010, 66, 4832–4840; (d) Palík, M.; Karlubíková, O.; Lackovicová,
D.; Lásiková, A.; Gracza, T. Tetrahedron 2010, 66, 5244–5249; (e) Srinivas, B.;
Sridhar, R.; Rama Rao, K. Tetrahedron 2010, 66, 8527–8535; (f) Ghosh, S.;
Pradhan, T. K. J. Org. Chem. 2010, 75, 2107–2110; (g) Palik, M.; Karlubikova, O.;
Lasikova, A.; Kozisek, J.; Gracza, T. Synthesis 2010, 3449–3452; (h) Zeng, J.;
Seenuvasan, V.; Xiang, S.; Liu, X.-W. Org. Lett. 2011, 13, 42–45; (i) Ghosal, P.;
Sharma, D.; Kumar, B.; Meena, S.; Sinha, S.; Shaw, A. K. Org. Biomol. Chem. 2011,
7372–7383; (j) Nagarapu, L.; Paparaju, V.; Satyender, A.; Rajasheker, B.
Tetrahedron Lett. 2011, 52, 7075–7078; (k) Sun, T.; Deutsch, C.; Krause, N.
Org. Biomol. Chem. 2012, 9, 7372–7383.
6. (a) Nagarapu, L.; Paparaju, V.; Satyender, A. Bioorg. Med. Chem. Lett. 2008, 18,
2351–2354; (b) Senthilmurugan, A.; Aidhen, I. S. Eur. J. Org. Chem. 2010, 3, 555–
564; (c) Caletkova, O.; Lasikova, A.; Hajduch, M.; Dzubak, P.; Gracza, T. ARKIVOC
2012, 365–383.
7. (a) Srihari, P.; Sridhar, Y. Eur. J. Org. Chem. 2011, 6690–6697; (b) Mehta, G.;
Ramesh, S.; Srihari, P. Tetrahedron Lett. 2012, 53, 829–832; For few other
contributions on the total synthesis of natural products see (c) Srihari, P.;
Mahankali, B.; Rajendraprasad, K. Tetrahedron Lett. 2012, 53, 56–58; (d) Srihari,
P.; Satyanarayana, K.; Ganganna, B.; Yadav, J. S. J. Org. Chem. 2011, 76, 1922–
1925; (e) Srihari, P.; Kumaraswamy, B.; Shankar, P.; Ravishashidhar, V.; Yadav,
J. S. Tetrahedron Lett. 2010, 51, 6174–6176.
(0.057 g, 85%) as a colorless oil; ½a D25
ꢂ
¼ ꢀ36:6 (c 1.5, CHCl3); IR tmax
(Neat): 3452, 2932, 1579, 1467, 1262, 1077 cmꢀ1
;
1H NMR
(500 MHz, CDCl3): d 7.23 (t, J = 7.9 Hz, 1H) 7.09–7.04 (m, 2H),
6.82 (d, J = 8.9 Hz, 1H), 6.15 (dd, J = 6.9, 15.9 Hz, 1H), 4.78 (s, 2H),
4.54 (dd, J = 4.9, 6.9 Hz, 1H), 4.45 (t, J = 5.9 Hz, 1H), 4.33 (dd,
J = 3.9, 5.9 Hz, 1H), 4.04 (qt, J = 5.9, 10.9 Hz, 1H), 3.86 (s, 3H), 1.57
(s, 3H), 1.36 (d, J = 6.9 Hz, 3H), 1.35 (s, 3H); 13C NMR (75 MHz,
CDCl3): d 158.0, 137.3, 130.7, 129.4, 128.8, 126.4, 119.3, 115.0,
119.7, 86.3, 85.5, 84.8, 80.3, 56.8, 55.6, 27.4, 25.5, 19.1; ESIMS:
m/z 343 [M+Na]+; HRESIMS: m/z 343.1512 [M+Na]+ (calcd for
C18H24O5Na: m/z 343.1521).
4.2.7. (2S,3R,4S,5R,E)-2-(2-(Hydroxymethyl)-3-methoxystyryl)-
5-methyl-tetrahydrofuran-3,4-diol 10
To a solution of compound 2 (0.025 g, 0.078 mmol, 1 equiv) in
THF (3 mL) was added 1N HCl (3 mL) and then the reaction mixture
was stirred at room temperature for 3 h. After complete conversion
of the starting material, the reaction mixture was quenched with
solid NaHCO3 (2.0 g), diluted with EtOAc (5 mL), and the organic
layer was separated. The aqueous layer was extracted with EtOAc
(2 ꢁ 5 mL) and the combined organic layer was washed with brine
8. Vamshikrishna, K.; Srihari, P. Tetrahedron 2012, 68, 1540–1546.
9. Mitsunobu, O. Synthesis 1981, 1–28.
10. (a) Bellingham, R.; Jarowicki, K.; Kocienski, P.; Martin, V. Synthesis 1996, 285–
296; (b) Blakemore, P. R.; Kocienski, P. J.; Marzcak, S.; Wicha, J. Synthesis 1999,
1209–1215.
11. (a) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 26–28;
(b) Kocienski, P. J.; Bell, A.; Blakemore, P. R. Synlett 2000, 365–366.
12. Garegg, P. J.; Samuelson, B. J. Chem. Soc. Perkin Trans. 1 1980, 2866–2869.