ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Dehydrogenative Amide Synthesis: Azide
as a Nitrogen Source
Zhenqian Fu,‡,§ Jeongbin Lee,†,§ Byungjoon Kang,† and Soon Hyeok Hong*,†
Center for Nanoparticle Research, Institute for Basic Science, and Department
of Chemistry, College of Natural Sciences, Seoul National University,
Seoul 151-747, Korea, and Division of Chemistry and Biological Chemistry,
School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore 637371, Singapore
Received October 23, 2012
ABSTRACT
A new atom-economical strategy to amide linkage from an azide and alcohol liberating hydrogen and nitrogen was developed with an in situ
generated ruthenium catalytic system. The reaction has broad substrate generality including diols for the synthesis of cyclic imides.
Atom-economical amide synthesis is one of the top
challenges in synthetic organic chemistry.1 The amide bond
is the key backbone of all natural peptides in biological
systems and is also a favorable functional group in all
branches of organic chemistry.2 Traditionally, amides have
been synthesized by reactions of carboxylic acids and their
derivatives with amines,3 which suffers from harsh conditions
and a large amount of byproduct. Over the past few years,
chemists have extensively addressed new methodologies to
amide linkage, aiming at a more efficient and environmentally
benign pathway. Interesting approaches include native chemi-
cal ligation;4 oxidative amidation of alcohols,5,9 aldehydes,6 or
alkynes;7 and oxidative coupling of an R-bromonitroalkane8
(Scheme 1). All these systems utilize amine, mostly primary
amine, as an “N” atom source of amide.
During our studies on the atom-economical and envi-
ronmentally benign amidation from an alcohol with an
amine prompted by a ruthenium catalytic system,9 we en-
visioned that amidation of alcohols could be achieved with
azides in place of amines. Herein, we report an in situ
generated catalyst based on RuH2(PPh3)4 for the direct
amide synthesis from azide and alcohol. To the best of our
knowledge, this is the first example of a transition-metal-
based catalytic system that transforms an azide and alcohol
directly into an amide in a single step.
† Seoul National University.
‡ Nanyang Technological University.
§ These authors contributed equally to this work.
(1) (a) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey,
G. R.; Leazer, J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman,
B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411.
(b) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
(2) (a) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97,
2243. (b) Bode, J. W. Curr. Opin. Drug Discovery Dev. 2006, 9, 765.
(c) Cupido, T.; Tulla-Puche, J.; Spengler, J.; Albericio, F. Curr. Opin.
Drug Discovery Dev. 2007, 10, 768.
(3) For reviews: (a) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38,
606. (b) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61,
10827. (c) Han, S.-Y.; Kim, Y.-A. Tetrahedron 2004, 60, 2447.
(4) Dawson, P. E.; Muir, T. W.; Clarklewis, I.; Kent, S. B. H. Science
1994, 266, 776.
The reaction of 2-phenylethanol (1a) and benzyl azide
(2a) was chosen to investigate the catalytic conditions to
realize the amidation of an alcohol with an azide (Table 1).
(6) (a) Gao, J.; Wang, G.-W. J. Org. Chem. 2008, 73, 2955. (b) Yoo,
W.-J.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 13064. (c) Tamaru, Y.;
Yamada, Y.; Yoshida, Z. Synthesis 1983, 474.
(7) Chan, W.-K.; Ho, C.-M.; Wong, M.-K.; Che, C.-M. J. Am. Chem.
Soc. 2006, 128, 14796.
(5) (a) Naota, T.; Murahashi, S.-I. Synlett 1991, 693. (b) Fujita, K.;
Yamamoto, K.; Yamaguchi, R. Org. Lett. 2002, 4, 2691. (c) Gunanathan,
C.;Ben-David, Y.;Milstein, D. Science 2007, 317, 790. (d) Watson, A. J. A.;
Maxwell, A. C.; Williams, J. M. J. Org. Lett. 2009, 11, 2667. (e) Nordstrøm,
L. U.; Vogt, H.; Madsen, R. J. Am. Chem. Soc. 2008, 130, 17672. (f) Dam,
J. H.; Osztrovszky, G.; Nordstrøm, L. U.; Madsen, R. Chem.;Eur. J.
2010, 16, 6820. (g) Nova, A.; Balcells, D.; Schley, N. D.; Dobereiner, G. E.;
Crabtree, R. H.; Eisenstein, O. Organometallics 2010, 29, 6548. (h) Schley,
N. D.; Dobereiner, G. E.; Crabtree, R. H. Organometallics 2011, 30, 4174.
(8) Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465, 1027.
(9) (a) Chen, C.; Zhang, Y.; Hong, S. H. J. Org. Chem. 2011, 76, 10005.
(b) Muthaiah, S.; Ghosh, S. C.; Jee, J.-E.; Chen, C.; Zhang, J.; Hong, S. H.
J. Org. Chem. 2010, 75, 3002. (c) Ghosh, S. C.; Hong, S. H. Eur. J. Org.
Chem. 2010, 4266. (d) Zhang, Y.; Chen, C.; Ghosh, S. C.; Li, Y.; Hong,
S. H. Organometallics 2010, 29, 1374. (e) Ghosh, S. C.; Muthaiah, S.;
Zhang, Y.; Xu, X.; Hong, S. H. Adv. Synth. Catal. 2009, 351, 2643.
r
10.1021/ol302915g
XXXX American Chemical Society