7096
A. Sipos et al. / Bioorg. Med. Chem. Lett. 22 (2012) 7092–7096
Table 4
the European Social Fund. The work was also supported by
the Hungarian Research Fund OTKA through Grants K 79126,
T-46186, OTKA-NKTH CK 77515, and NK 68578. L.N. acknowledges
the technical assistance from Leentje Persoons and Wim van Dam,
and the financial support from the Flemish Fonds voor
Wetenschappelijk Onderzoek (FWO No. 9.0188.07) and the
Geconcerteerde Onderzoeksacties (GOA/10/014).
Antiviral activity and cytotoxicity of compounds 2–12 in HEL cell cultures
Compounds
Antiviral EC50
(
l
M)
MCC
M)
(
l
HSV-
1
KOS
HSV-
2 G
Vaccinia
virus
Vesicular
stomatitis
virus
HSV-1
TK- KOS
ACVr
2
3
4
5
6
7
8
9
>100
9
47
45
>20
40
>100
45
40
47
40
>100
9
45
45
>20
27
>100
40
11
45
40
>100
>20
P58
47
>20
10
>100
>20
>100
>100
>20
>100
>100
52
>100
P20
50
45
>20
45
>100
P45
40
45
45
>100
P20
>100
P100
100
P100
>100
P100
P100
P100
>100
>250
>250
>250
>100
Supplementary data
Supplementary data associated with this article can be found,
>100
45
10
11
12
45
48
47
52
45
10
21
P250
>100
>250
>250
>250
>100
Brivudin
Cidofovir
Acyclovir
Ganciclovir
0.024 198
1.5
0.14
50
1.5
44
References and notes
0.9
0.14
1. Ashford, P.-A.; Bew, S. P. Chem. Soc. Rev. 2012, 41, 957.
2. Kristóf, K.; Kocsis, E.; Szabó, D.; Kardos, S.; Cser, V.; Nagy, K.; Hermann, P.;
Rozgonyi, F. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 691. and references
therein.
3. Nagarajan, R.; Schabel, A. A.; Occolowitz, J. L.; Counter, F. T.; Ott, J. L.; Felty-
Duckworth, A. M. J. Antibiot. 1998, 42, 63.
0.015 0.013 >100
4
HEL: human embryonic lung fibroblasts; HSV-1 KOS: herpes simplex virus type 1
strain KOS; HSV-2 G: herpes simplex virus type 2 strain G; TKÀ: thymidine kinase-
deficient HSV-1 KOS strain resistant to acyclovir (ACVr); EC50
: 50% effective
concentration, or concentration required for 50% decrease of virus-induced
cytopathogenicity. MCC: minimum compound concentration that causes a micro-
scopically detectable alteration of normal cell morphology.
4. (a) Nicolaou, K. C.; Boddy, C. N. C.; Bräse, S.; Winssinger, N. Angew. Chem., Int.
Ed. 1999, 38, 2096; (b) Kahne, D.; Leimkuhler, C.; Lu, W.; Walsh, C. Chem. Rev.
2005, 105, 425.
}
5. (a) Sztaricskai, F.; Pintér, G.; Roth, E.; Herczegh, P.; Kardos, F.; Rozgonyi, F.;
Whereas teicoplanin pseudoaglycon (2) was found to be inac-
tive against these viruses, several of the isoindole and benzoisoin-
dole derivatives 3–12 showed weak inhibitory effect, although
their antiviral EC50 values were relatively high and in the same or-
der of magnitude as the compound concentrations causing cyto-
toxicity. The 2-S-phenylisoindole derivatized glycopeptide 3 was
the most active, in particular against herpes simplex virus. It is
worthwhile to mention that the compound cytotoxicity in the
HEL cells (Table 4) was much less pronounced compared to MDCK
cells (Table 3).
Boda, Z. J. Antibiot. 2007, 60, 529; (b) Pintér, G.; Bereczki, I.; Batta, G.; Ötvös, R.;
Sztaricskai, F.; Roth, E.; Ostorházi, E.; Rozgonyi, F.; Naesens, L.; Szarvas, M.;
}
Boda, Z.; Herczegh, P. Bioorg. Med. Chem. Lett. 2010, 20, 2713; (c) Naesens, L.;
}
Vanderlinden, E.; Roth, E.; Jeko, J.; Andrei, G.; Snoeck, R.; Pannecouque, C.;
Illyés, E.; Batta, G.; Herczegh, P.; Sztaricskai, F. Antiviral Res. 2009, 82, 89; (d)
Vanderlinden, E.; Vanstreels, E.; Boons, E.; Ter Veer, W.; Huckriede, A.;
}
Daelemans, D.; Van Lommel, A.; Roth, E.; Sztaricskai, F.; Herczegh, P.;
Naesens, L. J. Virol. 2012, 86, 9416; (e) Pintér, G.; Batta, G.; Kéki, S.; Mándi,
}
A.; Komáromi, I.; Takács-Novák, K.; Sztaricskai, F.; Roth, E.; Ostorházi, E.;
Rozgonyi, F.; Naesens, L.; Herczegh, P. J. Med. Chem. 2009, 52, 6053.
}
6. Sipos, A.; Máté, G.; Roth, E.; Borbás, A.; Batta, G.; Bereczki, I.; Kéki, S.; Jóna, I.;
Ostorházi, E., Rozgonyi, F.; Vanderlinden, E., Naesens, L.; Herczegh, P. Eur. J.
Med. Chem. 2012, submitted for publication.
In conclusion, we have extended the series of isoindole- and
benzoisoindole-fused glycopeptides with the synthesis of a set of
teicoplanin pseudoaglycon derivatives. These compounds were
found to possess remarkably high antibacterial activity against a
panel of Gram positive bacteria including some resistant strains.
Almost all of the new derivatives exhibited better MIC and MBC
values than the parent antibiotic teicoplanin. The antiviral tests
of these (benzo)isoindoles showed mixed results. We were able
to identify two active anti-influenza virus agents, but other RNA
and DNA viruses were only weakly inhibited. On the basis of these
promising antibacterial results further examinations will be per-
formed in order to identify the mechanism of action.
7. Wanner, J.; Tang, D.; McComas, C. C.; Crowley, B. M.; Jiang, W.; Moss, J.; Boger,
D. L. Bioorg. Med. Chem. Lett. 2003, 13, 1169.
8. (a) Simons, S. S.; Johnson, D. F. J. Org. Chem. 1978, 43, 2886; (b) García Alvarez-
Coque, M. C.; MedinaHernández, M. J.; Villanueva Camañas, R. M.; Mongay
Fernández, C. Anal. Biochem. 1998, 178, 1.
10. Protocol for antibacterial studies: Sztaricskai, F.; Batta, G.; Herczegh, P.; Balázs,
}
}
A.; Jeko, J.; Roth, E.; Szabó, P. T.; Kardos, S.; Rozgonyi, F.; Boda, Z. J Antibiot.
2006, 59, 564.
12. Cell-culture based assays for determination of the inhibitory effect on
influenza virus replication: Vanderlinden, E.; Göktas, F.; Cesur, Z.; Froeyen,
M.; Reed, M. L.; Russell, C. J.; Cesur, N.; Naesens, L. J. Virol. 2010, 84,
4277.
ˇ
13. Protocols for broad-spectrum antiviral studies: Krecmerová, M.; Holy, A.; Pohl,
R.; Masojídková, M.; Andrei, G.; Naesens, L.; Neyts, J.; Balzarini, J.; De Clercq, E.;
Snoeck, R. J. Med. Chem. 2007, 50, 5765.
Acknowledgments
The work is supported by the TÁMOP 4.2.1/B-09/1/KONV-2010-
0007 project. The project is co-financed by the European Union and