390
B. Wang et al. / Dyes and Pigments 96 (2013) 383e390
[20] Zielonka J, Sikora A, Joseph J, Kalyanaraman B. Peroxynitrite is the major
species formed from different flux ratios of co-generated nitric oxide and
superoxide: direct reaction with boronate-based fluorescent probe. J Biol
Chem 2010;285:14210e6.
RAW264.7 cell lines show that BOD-Se is able to sense different
intracellular ONOOꢀ level changes.
[21] Yu FB, Song P, Li P, Wang BS, Han KL. A fluorescent probe directly detect
peroxynitrite based on boronate oxidation and its applications for fluores-
cence imaging in living cells. Analyst 2012;137:3740e9.
Acknowledgements
[22] Ma JJ, Wu JS, Liu WM, Wang PF, Fan ZY. Ruthenium(II) complex-based fluo-
rescent sensor for peroxynitrite. Spectrochim Acta Part A 2012;94:340e5.
[23] Wang QC, Qu DH, Ren J, Xu LH, Liu MY, Tian H. New benzo[e]indolinium
cyanine dyes with two different fluorescence wavelengths. Dyes Pigments
2003;59:163e72.
This work was supported by NSFC (20833008).
Appendix A. Supplementary material
[24] Jiao J, Zhang XR, Chang NH, Wang J, Wei JF, Shi XY, et al. A facile and practical
copper powder-catalyzed, organic solvent- and ligand-free Ullmann amina-
tion of aryl halides. J Org Chem 2011;76:1180e3.
Supplementary data related to this article can be found at http://
[25] Peng XJ, Du JJ, Fan JL, Wang JY, Wu YK, Zhao JZ, et al. A selective fluorescent
sensor for imaging Cd2þ in living cells. J Am Chem Soc 2007;129:1500e1.
[26] Rurack K, Kollmannsberger M, Daub J. Molecular switching in the near
infrared (NIR) with a functionalized boron-dipyrromethene dye. Angew Chem
Int Ed 2001;40:385e7.
[27] Reich HJ, Cohen ML, Clark PS. Reagents for synthesis of organoselenium
compounds: diphenyl diselenide and benzeneselenenyl chloride. Org Synth
1979;59:141.
[28] Henriksen L, Stuhr-Hansen N. Rapid and precise preparation of reactive
benzeneselenolate solutions by reduction of diphenyl diselenide with
hydrazineesodium methanolate. J Chem Soc Perkin Trans 1999;1:1915e6.
[29] Yu FB, Li P, Li GY, Zhao GJ, Chu TS, Han KL. A near-IR reversible fluorescent
probe modulated by selenium for monitoring peroxynitrite and imaging in
living cells. J Am Chem Soc 2011;133:11030e3.
[30] Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. Organoselenium chemistry: role of
intramolecular interactions. Chem Rev 2010;110:4357e416.
[31] Sarma BK, Manna D, Minoura M, Mugesh G. Synthesis, structure, spirocycli-
zation mechanism, and glutathione peroxidase-like antioxidant activity of
stable spirodiazaselenurane and spirodiazatellurane. J Am Chem Soc 2010;
132:5364e74.
References
[1] Ducrocq C, Blanchard B, Pignatelli B, Ohshima H. Peroxynitrite: an endogenous
oxidizing and nitrating agent. Cell Mol Life Sci 1999;55:1068e77.
[2] Radi R, Cassina A, Hodara R, Quijano C, Castro L. Peroxynitrite reactions and
formation in mitochondria. Free Radic Biol Med 2002;33:1451e64.
[3] Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and
disease. Physiol Rev 2007;87:315e424.
[4] Ferrer-Sueta G, Radi R. Chemical biology of peroxynitrite: kinetics, diffusion,
and radicals. ACS Chem Biol 2009;4:161e77.
[5] Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology
and development of therapeutics. Nat Rev Drug Discov 2007;6:662e80.
[6] Liaudet L, Vassalli G, Pacher P. Role of peroxynitrite in the redox regulation of
cell signal transduction pathways. Front Biosci 2009;14:4809e14.
[7] Chen SL, Jian L, Lang HQ. Optimization of peroxynitrite-luminol
chemiluminescence system for detecting peroxynitrite in cell culture solu-
tion exposed to carbon disulphide. Luminescence 2003;18:249e53.
[8] Bian ZY, Guo XQ, Zhao YB, Du JO. Probing the hydroxyl radical-mediated
reactivity of peroxynitrite by a spin-labeling fluorophore. Anal Sci 2005;21:
553e9.
[32] Boens N, Leen V, Dehaen W. Fluorescent indicators based on BODIPY. Chem
Soc Rev 2012;41:1130e72.
[33] Ulrich G, Ziessel R, Harriman A. The chemistry of fluorescent bodipy dyes:
versatility unsurpassed. Angew Chem Int Ed 2008;47:1184e201.
[34] Guo HM, Jing YY, Yuan XL, Ji SM, Zhao JZ, Li XH, et al. Highly selective fluo-
rescent OFF-ON thiol probes based on dyads of BODIPY and potent intra-
molecular electron sink 2,4-dinitrobenzenesulfonyl subunits. Org Biomol
Chem 2011;9:3844e53.
[9] Daiber A, Oelze M, August M, Wendt M, Sydow K, Wieboldt H, et al. Detection
of superoxide and peroxynitrite in model systems and mitochondria by the
luminol analogue L-012. Free Radic Res 2004;38:259e69.
[10] Xue J, Ying XY, Chen JS, Xian YZ, Jin LT, Jin JY. Amperometricultramicrosensors
for peroxynitrite detection and its application toward single myocardial cells.
Anal Chem 2000;72:5313e21.
[35] Chen YH, Zhao JZ, Guo HM, Xie LJ. Geometry relaxation-induced large stokes
shift in red-emitting borondipyrromethenes (BODIPY) and applications in
fluorescent thiol probes. J Org Chem 2012;77:2192e206.
[11] Wang R, Yu CW, Yu FB, Chen LX. Molecular fluorescent probes for monitoring
pH changes in living cells. In: TrAC Trends Anal Chem, vol. 29; 2010. p.
1004e13.
[12] Ueno T, Nagano T. Fluorescent probes for sensing and imaging. Nat Methods
2011;8:642e5.
[13] Ueno T, Urano Y, Setsukinai K, Takakusa H, Kojima H, Kikuchi K, et al. Rational
principles for modulating fluorescence properties of fluorescein. J Am Chem
Soc 2004;126:14079e85.
[14] Ueno T, Urano Y, Kojima H, Nagano T. Mechanism-based molecular design of
highly selective fluorescence probes for nitrative stress. J Am Chem Soc 2006;
128:10640e1.
[15] Yang D, Wang HL, Sun ZN, Chung NW, Shen JG. A highly selective fluorescent
probe for the detection and imaging of peroxynitrite in living cells. J Am Chem
Soc 2006;128:6004e5.
[16] Sun ZN, Wang HL, Liu FQ, Chen Y, Tam PK, Yang D. BODIPY-based fluorescent
probe for peroxynitrite detection and imaging in living cells. Org Lett 2009;
11:1887e90.
[17] Oushiki D, Kojima H, Terai T, Arita M, Hanaoka K, Urano Y, et al. Development
and application of a near-infrared fluorescence probe for oxidative stress
based on differential reactivity of linked cyanine dyes. J Am Chem Soc 2010;
132:2795e801.
[18] Peng T, Yang D. HKGreen-3: a rhodol-based fluorescent probe for peroxyni-
trite. Org Lett 2010;12:4932e5.
[36] Pahari P, Chaturvedi S. Determination of best-fit potential parameters for
a
reactive force field using
a genetic algorithm. J Mol Model 2012;18:
1049e61.
[37] Zhang ZY, Xu B, Su JH, Shen LP, Xie YS, Tian H. Color-tunable solid-state
emission of 2,20-biindenyl-based fluorophores. Angew Chem Int Ed 2011;
50:11654e7.
[38] de Silva AP, Gunaratne HQ, Gunnlaugsson T, Huxley AJ, McCoy CP,
Rademacher JT, et al. Signaling recognition events with fluorescent sensors
and switches. Chem Rev 1997;97:1515e66.
[39] Baruah M, Qin W, Flors C, Hofkens J, Vallée R, Beljonne D, et al. Solvent and pH
dependent fluorescent properties of
a
dimethylaminostyryl bor-
ondipyrromethene dye in solution. J Phys Chem A 2006;110:5998e6009.
[40] Bassenge E, Kukovetz WR. Molsidomine. Cardiovasc Drug Rev 1984;2:
177e91.
[41] Iovine NM, Pursnani S, Voldman A, Wasserman G, Blaser MJ, Weinrauch Y.
Reactive nitrogen species contribute to innate host defense against
campylobacter jejuni. Infect Immun 2008;76:986e93.
[42] Muijsers RB, Van Den Worm E, Folkerts G, Beukelman CJ, Koster AS,
Postma DS, et al. Apocynin inhibits peroxynitrite formation by murine
macrophages. Br J Pharmacol 2000;130:932e6.
[43] Dickinson BC, Peltier J, Stone D, Schaffer DV, Chang CJ. Nox2 redox
signaling maintains essential cell populations in the brain. Nat Chem Biol
2011;7:106e12.
[19] Xu KH, Chen HC, Tian JW, Ding BY, Xie YX, Qiang MM, et al. A near-infrared
reversible fluorescent probe for peroxynitrite and imaging of redox cycles in
living cells. Chem Commun 2011;47:9468e70.