Journal of the American Chemical Society
Communication
vinylogous ester 14.18 This was an exceptionally challenging
transformation given the four allylic sites present in 13 and the
steric environment surrounding the desired oxidation site.
Hydrolysis of the ketal present in 14 to yield alcohol 15 was
ACKNOWLEDGMENTS
■
We acknowledge financial support from Chemiderm, Inc.
B.A.S. acknowledges a NSF Predoctoral Fellowship.
19
performed in two steps: treatment of 14 with BrBMe2
REFERENCES
■
followed by LiTMP-mediated methanol extrusion from the
intermediate hemiketal. It was crucial to maintain the
temperature of the BrBMe2-mediated hydrolysis below −90
°C; above this temperature, elimination of the triethylsilyl ether
was observed.
After surveying a variety of methods to install the C7 prenyl
group from 15, we pursued a radical Keck allylation approach.20
A radical precursor, thionocarbonate 16, was generated from
the reaction of alcohol 15 with ClC(S)OC6F5.21 Using BEt3/air
as an initiator, radical allylation of 16 with allyl−SnBu3 afforded
a product containing a C7 allyl group as a single diastereomer.
Employing more reactive radical precursor functionality or
either photochemical or thermal radical generation conditions
gave inferior results for this coupling reaction. An ensuing
cross-metathesis with 2-methyl-2-butene catalyzed by Hovey-
da−Grubbs second-generation catalyst 1722 afforded 18
containing the requisite C7 prenyl moiety.
After silylation at the C3 position, sequential bridgehead
deprotonation−acylation using LiTMP and i-PrC(O)CN10n
yielded ketone 19. This direct, one-step bridgehead acylation is
noteworthy given that previously reported instances of PPAP
bridgehead acylation at the C1 position require multiple steps
involving a bridgehead iodide intermediate.10b,d,l One-pot
desilylation and elimination to give 20 was accomplished
through microwave irradiation of 19 with p-TsOH·H2O. The
final C3 prenyl group was installed utilizing a precedented
sequence23 to afford hyperforin methyl ether 21:24 (1)
deprotonation of 20 with LDA, (2) transmetalation with
Li(2-Th)CuCN,25 and (3) trapping with prenyl bromide.
Finally, hyperforin (1) was revealed by heating a DMSO
solution of 21 with LiCl.
In summary, we report an enantioselective total synthesis of
hyperforin. The synthesis is 18 steps at its longest sequence,
starting from geraniol. This approach is also highly scalable; to
date, we have prepared over 40 mg of hyperforin. Latent
symmetry elements were utilized to quickly access the
hyperforin bicyclo[3.3.1]nonane core and to set two key
quaternary stereocenters, specifically in the conversion of
epoxide 12 to ketal 13. This practical and modular route is
already being exploited to create diverse hyperforin analogues,
which we are using to further understand the SAR and
underlying mechanisms of hyperforin biological and medicinal
activity. Results from these studies will be reported in due
course.
(1) (a) Gurevich, A. I.; Dobrynin, V. N.; Kolosov, M. N.; Popravko,
S. A.; Ryabova, I. D.; Chernov, B. K.; Derbentseva, N. A.; Aizenman, B.
E.; Garagulya, A. D. Antibiotiki 1971, 16, 510. (b) Bystrov, N. S.;
Chernov, B. K.; Dobrynin, V. N.; Kolosov, M. N. Tetrahedron Lett.
1975, 16, 2791. (c) Brondz, I.; Greibokk, T.; Groth, P. A.; Aasen, A. J.
Tetrahedron Lett. 1982, 23, 1299. (d) Brondz, I.; Greibrokk, T.; Groth,
P.; Aasen, A. J. Acta Chem. Scand. A 1983, 37, 263.
(2) For reviews specific to hyperforin, see: (a) Beerhues, L.
Phytochem. 2006, 67, 2201. (b) Medina, M. A.; Martínez-Poveda, B.;
́
Amores-Sanchez, M. I.; Quesada, A. R. Life Sci. 2006, 79, 105.
(c) Quiney, C.; Billard, C.; Salanoubat, C.; Fourneron, J. D.; Kolb, J. P.
Leukemia 2006, 20, 1519.
(3) (a) Greeson, J. M.; Sanford, B.; Monti, D. A. Psychopharmacology
2001, 153, 402. (b) Di Carlo, G.; Borrelli, F.; Ernst, E.; Izzo, A. A.
Trends Pharmacol. Sci. 2001, 22, 292. (c) Muller, W. E. Pharmacol. Res.
2003, 47, 101. (d) Linde, K. Forsch. Komplementmed. 2009, 16, 146.
̈
(4) Chatterjee, S. S.; Bhattacharya, S. K.; Wonnemann, M.; Singer,
A.; Muller, W. E. Life Sci. 1998, 63, 499. Also, see: Pharmacopsychiatry
̈
1998, 31, Supplementary Issue 1 and Pharmacopsychiatry 2001, 34,
Supplementary Issue.
(5) Leuner, K.; Kazanksi, V.; Muller, M.; Essin, K.; Henke, B.;
̈
Gollasch, M.; Harteneck, C.; Muller, W. E. FASEB J. 2007, 21, 4101.
̈
(6) (a) Trifunovic,
Jankov, R.; Milosavljevic,
́
S.; Vajs, V.; Macura, S.; Juranic,
́
N.; Djarmati, Z.;
́
S. Phytochemistry 1998, 49, 1305. (b) Wolf-
ender, J.-L.; Verotta, L.; Belvisi, L.; Fuzzati, N.; Hostettmann, K.
Phytochem. Anal. 2003, 14, 290. (c) Verotta, L.; Lovaglio, E.; Sterner,
O.; Appendino, G.; Bombardelli, E. Eur. J. Org. Chem. 2004, 1193.
(d) Ang, C. Y. W.; Hu, L.; Heinze, T. M.; Cui, Y.; Freeman, J. P.;
Kozak, K.; Luo, W.; Lui, F. F.; Mattia, A.; DiNovi, M. J. Agric. Food
Chem. 2004, 52, 6156. (e) D’Auria, M.; Emanuele, L.; Racioppi, R.
Lett. Org. Chem. 2008, 5, 583.
(7) (a) Moore, L. B.; Goodwin, B.; Jones, S. A.; Wisely, G. B.;
Serabjit-Singh, C. J.; Willson, T. M.; Collins, J. L.; Kliewer, S. A. Proc.
Natl. Acad. Sci. U.S.A. 2000, 97, 7500. (b) Watkins, R. E.; Maglich, J.
M.; Moore, L. B.; Wisely, G. B.; Noble, S. M.; Davis-Searles, P. R.;
Lambert, M. H.; Kliewer, S. A.; Redinbo, M. R. Biochemistry 2003, 42,
1430.
(8) For examples, see: (a) Verotta, L.; Appendino, G.; Belloro, E.;
Bianchi, F.; Sterner, O.; Lovati, M.; Bombardelli, E. J. Nat. Prod. 2002,
65, 433. (b) Gartner, M.; Muller, T.; Simon, J. C.; Giannis, A.;
̈
Sleeman, J. P. ChemBioChem 2005, 6, 171.
(9) For reviews of PPAPs, see: (a) Ciochina, R.; Grossman, R. B.
Chem. Rev. 2006, 106, 3963. (b) Singh, I. P.; Sidana, J.; Bharate, S. B.;
Foley, W. J. Nat. Prod. Rep. 2010, 27, 393. (c) Tsukano, C.; Siegel, D.
R.; Danishefsky, S. J. J. Synth. Org. Chem. Jpn. 2010, 68, 592.
(d) Njardarson, J. T. Tetrahedron 2011, 67, 7631. (e) Richard, J.-A.;
Pouwer, R. H.; Chen, D. Y.-K. Angew. Chem., Int. Ed. 2012, 51, 4536.
(10) (a) Kuramochi, A.; Usuda, H.; Yamatsugu, K.; Kanai, M.;
Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 14200. (b) Siegel, D. R.;
Danishefsky, S. J. J. Am. Chem. Soc. 2006, 128, 1048. (c) Rodeschini,
V.; Ahmad, N. M.; Simpkins, N. S. Org. Lett. 2006, 8, 5283.
(d) Tsukano, C.; Siegel, D. R.; Danishefsky, S. J. Angew. Chem., Int. Ed.
2007, 46, 8840. (e) Qi, J.; Porco, J. A., Jr. J. Am. Chem. Soc. 2007, 129,
12682. (f) Nuhant, P.; David, M.; Pouplin, T.; Delpech, B.; Marazano,
C. Org. Lett. 2007, 9, 287. (g) Rodeschini, V.; Simpkins, N. S.; Wilson,
C. J. Org. Chem. 2007, 72, 4265. (h) Ahmad, N. M.; Rodeschini, V.;
Simpkins, N. S.; Ward, S. E.; Blake, A. J. J. Org. Chem. 2007, 72, 4803.
(i) Qi, J.; Beeler, A. B.; Zhang, Q.; Porco, J. A., Jr. J. Am. Chem. Soc.
2010, 132, 13642. (j) Zhang, Q.; Mitasev, B.; Qi, J.; Porco, J. A., Jr. J.
Am. Chem. Soc. 2010, 132, 14212. (k) Garnsey, M. R.; Lim, D.; Yost, J.
M.; Coltart, D. M. Org. Lett. 2010, 12, 5234. (l) Simpkins, N. S.;
Taylor, J. D.; Weller, M. D.; Hayes, C. J. Synlett 2010, 639.
(m) Simpkins, N. S.; Weller, M. D. Tetrahedron Lett. 2010, 51, 4823.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures, spectroscopic data, and H and 13C
1
NMR spectra. This material is available free of charge via the
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
C
dx.doi.org/10.1021/ja312150d | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX