B. Huang et al. / Bioorg. Med. Chem. Lett. 22 (2012) 7330–7334
7333
Table 1
Cytotoxic activity (IC50
However, no significant effects were found for diosgenyl salicylate
conjugates against any of the three tumor cell lines investigated.
Meanwhile, structure–activity relationship studies indicate that
compound 9c and all salicylate conjugates exhibit desirable anti-
inflammatory activity compared to aspirin and diosgenin. The
incorporation of an aminocaproic residue with diosgenin is optimal
for the anti-tumor and anti-inflammatory activities.
Further investigations on the synthesis and biological behavior
of diosgenyl esters with long, straight amino acid chains to eluci-
date their anticancer effects and anti-inflammatory properties are
forthcoming.
,
l
M) of synthetic diosgenyl estersa,b
Cancer cell line
Compound
MDA-MB-231
C26
Hep G2
Aspirin
Diosgenin
5
6c
6e
7c
7e
8c
8d
9c
9e
Deltonin
1510
>50
>50
>50
>50
>50
>50
48.2
>50
7.6
1740
>50
>50
>50
>50
>50
>50
>50
>50
4.7
3841
>50
>50
>50
>50
>50
>50
>50
>50
14.6
>50
7.66
Acknowledgments
>50
>50
1.5824
1.2225
This research was supported by grants from the China National
‘12.5’ Foundation (No. 2011BAJ07B04), National Natural Science
Foundation of China (No. 20972105, No.30900493) and Sichuan
Province Foundation (No. 2008SZ0024).
a
IC50 is the concentration in
lM that inhibits cell growth by 50% in 48 h com-
pared to cells that remained untreated.
b
Means obtained from a minimum of n = 3 independent MTT assays for each
compound.
Supplementary data
Table 2
Anti-inflammatory activities of diosgenyl esters against xylene-induced ear edema in
Supplementary data associated with this article can be found, in
10.086. These data include MOL files and InChiKeys of the most
important compounds described in this article.
micea,b
Agents
Edema weight (X SD mg)
10.73 3.01
Inhibition (%)
CMC
Aspirin
Diosgenin
5
6c
6e
7c
7e
8c
8d
9c
9e
d
7.22 2.50
7.18 2.57
5.67 2.23
7.57 2.75
6.81 2.53
8.58 2.18
31.9
32.2
46.5
28.6
35.8
19.1
30.1
30.6
39.1
38.6
42.6
c
References and notes
d
c
1. Ramawat, K. G.; Dass, S.; Mathur, M. In Herbal Drugs, Ethnomedicine to Modern
Medicine; Ramawat, K. G., Ed.; Berlin: Heidelberg, 2009; p p13. Chapter 2.
2. Jung, D. H.; Park, H. J.; Byun, H. E.; Park, Y. M.; Kim, T. W.; Kim, B. O.; Um, S. H.;
Pyo, S. Int. Immunopharmacol. 2010, 10, 1047.
3. Gong, G. H.; Qin, Y.; Huang, W. Phytomedicine 2011, 18, 458.
4. Cailleteau, C.; Liagre, B.; Battu, S.; Jayat-Vignoles, C.; Beneytout, J. L. Anal.
Biochem. 2008, 380, 26.
5. Huang, C. H.; Liu, D. Z.; Jan, T. R. J. Nat. Prod. 2010, 73, 1033.
6. Chang, H. Y.; Kao, M. C.; Way, T. D.; Ho, C. T.; Fu, E. J. Agric. Food Chem. 2011, 59,
5357.
7. Raju, J.; Bird, R. P. Cancer Lett. 2007, 255, 194.
8. Rivera, D. G.; Concepción, O.; Perez-Labrada, K.; Coll, F. Tetrahedron 2008, 64,
5298.
9. Kvasnica, M.; Budesinsky, M.; Swaczynova, J.; Pouzar, V.; Kohout, L. Bioorg. Med.
Chem. 2008, 16, 3704.
d
c
7.41 2.92
7.36 2.59
6.46 2.09
6.51 3.02
c
d
c
c
6.08 2.91
a
All compounds were dissolved in 0.5% CMC and administered orally at the dose
of 100 mg/kg except Aspirin group at the dose of 50 mg/kg.
b
Ten animals were used in each group (n = 10) and data were represented as
mean SD.
c
Compare to CMC group, p< 0.05.
Compare to CMC group, p< 0.01.
d
10. Yeomans, N. D. J. Gastroenterol. Hepatol. 2011, 26, 426.
11. Kune, G. A.; Kune, S.; Watson, L. F. Cancer Res. 1988, 48, 4399.
12. Elwood, P. C.; Gallagher, A. M.; Duthie, G. G.; Mur, L. A. J.; Morgan, G. Lancet
2009, 373, 1301.
13. Harris, R. E.; Beebe-Donk, J.; Doss, H.; Burr, D. D. Oncol. Rep. 2005, 13, 559.
14. Cuzick, J.; Otto, F.; Baron, J. A.; Brown, P. H.; Burn, J.; Greenwald, P.; Jankowski,
J.; Vecchia, C. L.; Meyskens, F. Lancet Oncol. 2009, 10, 501.
15. Ulrich, C. M.; Bigler, J.; Potter, J. D. Nat. Rev. Cancer 2006, 6, 130.
16. Rothwell, P. M.; Fowkes, F. J. R.; Belch, J. F. F.; Ogawa, H.; Warlow, C. P.; Meade,
T. Lancet 2011, 377, 31.
17. Poyraz, M.; Banti, C. N.; Kourkoumelis, N.; Dokorou, V.; Manos, M. J.; Simcic,
M.; Golic-Grdadolnik, S.; Mavromoustakos, T.; Giannoulis, A. D.; Verginadis, I.
I.; Charalabopoulos, K.; Hadjikakou, S. K. Inorg. Chim. Acta 2011, 375, 114.
18. Nelson, M. Lancet 2011, 377, 1650.
19. Khalikov, S. K.; Kodirov, M.; Alieva, S. V. Chem. Nat. Compd. 2006, 42, 204.
20. Huang, W.; Zhao, H.; Ni, J.; Zuo, H.; Qiu, L.; Li, H.; Li, H. Bioresour. Technol. 2008,
99, 7407.
(at a dose of 50 mg/kg, inhibition 31.9%). It was noted that the
salicylate conjugates (i.e., 5, 6e, 8d, and 9e) possess higher anti-
inflammatory activities than both diosgenin and aspirin, especially
compounds 5 and 9e, which have inhibition rates of 46.5% and
42.6%, respectively. Moreover, compound 9c also showed signifi-
cant suppression with an inhibition rate of 38.6%. However, the
anti-inflammatory activities of the other amino acid diosgenyl es-
ters (i.e., 6c: 28.6% and 8c: 30.6%) were slightly less, and no signif-
icant effect was found for compound 7c, which had an inhibition
rate of only 19.1%.
Most of the diosgenyl compounds significantly inhibited xy-
lene-induced rat ear edema (Table 2), and exhibited comparable
or superior anti-inflammatory activities than the reference drugs
aspirin and diosgenin. Structure–activity relationship studies re-
veal that salicylate conjugate 5 has better anti-inflammatory activ-
ity than salicylate complexes 6e, 7e, 8d, and 9e, which have amino
acid bridges between aspirin and diosgenin. In addition, diosgenyl
esters 8c and 9c, which have straight amino acid chains, demon-
strate significantly higher anti-inflammatory effects than com-
pounds 6c and 7c, which have branched amino acid chains.
We synthesized several amino acid diosgenyl esters and diosge-
nyl salicylate compounds with different amino acid bridging
chains. 6-Aminohexanoic acid diosgenyl ester (9c) is highly active
towards inhibiting the proliferation of MDA-MB-231 and C26.
21. Qiu, L.; Niu, H.; Huang, W. Chem. Eng. Res. Des. 2011, 89, 239.
22. Qin, Y.; Wu, X. H.; Huang, W.; Gong, G. H.; Li, D.; He, Y.; Zhao, Y. J.
Ethnopharmacol. 2009, 126, 543.
23. Tong, Q. Y.; He, Y.; Zhao, Q. B.; Qing, Y.; Huang, W.; Wu, X. H. Steroids 2012, 77,
1219.
24. Shu, D.; Qing, Y.; Tong, Q. Y.; He, Y.; Xing, Z. H.; Zhao, Y. L.; Li, Y.; Wei, Y. Q.;
Huang, W.; Wu, X. H. Biol. Pharm. Bull. 2011, 34, 1231.
25. Tong, Q. Y.; Qing, Y.; Shu, D.; He, Y.; Zhao, Y. L.; Li, Y.; Wang, Z. L.; Zhang, S. Y.;
Xing, Z. H.; Xu, C.; Wei, Y. Q.; Huang, W.; Wu, X. H. Cell. Physiol. Biochem. 2011,
27, 233.
26. Gong, G. H.; Qin, Y.; Huang, W.; Zhou, S.; Wu, X. H.; Yang, X. H.; Zhao, Y. L.; Li, D.
Chem. Biol. Interact. 2010, 184, 366.
27. Abdellatif, K. R. A.; Chowdhury, M. A.; Dong, Y.; Das, D.; Yu, G.; Velazquez, C. A.;
Suresh, M. R.; Knaus, E. E. Bioorg. Med. Chem. Lett. 2009, 19, 3014.
28. Passarella, D.; Peretto, B.; Yepes, R. B.; Cappelletti, G.; Cartelli, D.; Ronchi, C.;
Snaith, J.; Fontana, G.; Danieli, B.; Borlak, J. Eur. J. Med. Chem. 2010, 45, 219.
29. Chankeshwara, S. V.; Chakraborti, A. K. Org. Lett. 2006, 8, 3259.