Journal of the American Chemical Society
Communication
(3) Recent reviews: (a) Godoi, B.; Schumacher, R. F.; Zeni, G. Chem.
Rev. 2011, 111, 2937. (b) Cadierno, V.; Crochet, P. Curr. Org. Synth.
2008, 5, 343. (c) Patil, N. T.; Yamamoto, Y. ARKIVOC 2007, No. x, 121.
(d) D’Souza, D. M.; Muller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095.
(e) Kirsch, S. F. Org. Biomol. Chem. 2006, 4, 2076. (f) Brown, R. C. D.
Angew. Chem., Int. Ed. 2005, 44, 850. (g) Hou, X. L.; Cheung, H. Y.;
Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C.
Tetrahedron 1998, 54, 1955. Selected recent examples of transition-
metal-catalyzed intermolecular synthesis of furans: (h) Lenden, P.;
Entwistle, D. A.; Willis, M. C. Angew. Chem., Int. Ed. 2011, 50, 10657.
(i) Donohoe, T. J.; Bower, J. F. Proc. Natl. Acad. Sci. U.S.A. 2010, 107,
3373. (j) Krische, M. J. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 3279.
(k) Zhang, M.; Jiang, H. F.; Neumann, H.; Beller, M.; Dixneuf, P. H.
Angew. Chem., Int. Ed. 2009, 48, 1681.
defined structures, as successfully demonstrated by the synthesis
of α-furan trimer F3 and tetramer F4 (Scheme 3). The single-
crystal structure of F3 clearly revealed a highly planar
conformation in spite of the presence of the ester functionalities
(Scheme 3; see the SI). Initial studies showed that solutions of
F2−4 in THF, which were highly fluorescent, gave optical
spectra with structured absorption bands having longer wave-
lengths than F1. More interestingly, the absorption was further
red-shifted as the number of furan units increased, indicating
increasing conjugation in F2−4 (Figure 1).
(4) (a) Briones, J. F.; Davies, H. M. L. Tetrahedron 2011, 67, 4313.
(b) Davies, H. M. L.; Romines, K. R. Tetrahedron 1988, 44, 3343.
(5) Pang, W.; Zhu, S. F.; Xin, Y.; Jiang, H. F.; Zhu, S. Z. Tetrahedron
2010, 66, 1261.
(6) (a) Zhang, Z. H.; Han, J. W.; Zhu, S. Z. Tetrahedron 2011, 67, 8496.
(b) Lee, Y. R.; Suk, J. Y. Tetrahedron Lett. 2000, 41, 4795. (c) Pirrung, M.
C.; Blume, F. J. Org. Chem. 1999, 64, 3642. (d) Pirrung, M. C.; Zhang, J.
C.; Morehead, A. T. Tetrahedron Lett. 1994, 35, 6229. (e) Muller, P.;
Allenbach, Y. F.; Bernardinelli, G. Helv. Chim. Acta 2003, 86, 3164.
(7) Furan formation via metal-catalyzed intramolecular cyclization of
alkynyl diazo reagents: (a) Padwa, A.; Straub, C. S. J. Org. Chem. 2003,
68, 227. (b) Padwa, A.; Straub, C. S. Org. Lett. 2000, 2, 2093.
(c) Gettwert, V.; Krebs, F.; Maas, G. Eur. J. Org. Chem. 1999, 1213.
(d) Padwa, A.; Kinder, F. R. J. Org. Chem. 1993, 58, 21. (e) Padwa, A.;
Dean, D. C.; Fairfax, D. J.; Xu, S. L. J. Org. Chem. 1993, 58, 4646.
(f) Padwa, A.; Krumpe, K. E.; Gareau, Y.; Chiacchio, U. J. Org. Chem.
1991, 56, 2523. (g) Padwa, A.; Chiacchio, U.; Garreau, Y.; Kassir, J. M.;
Krumpe, K. E.; Schoffstall, A. M. J. Org. Chem. 1990, 55, 414. (h) Kinder,
F. R.; Padwa, A. Tetrahedron Lett. 1990, 31, 6835.
(8) (a) Li, H. Y.; Hsung, R. P. Org. Lett. 2009, 11, 4462. (b) Zhou, L.;
Ma, J.; Zhang, Y.; Wang, J. Tetrahedron Lett. 2011, 52, 5484. (c) Zhao, L.
B.; Guan, Z. H.; Han, Y.; Xie, Y. X.; He, S.; Liang, Y. M. J. Org. Chem.
2007, 72, 10276. (d) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.;
Lei, A. J. Am. Chem. Soc. 2012, 134, 5766. (e) Yan, R. L.; Huang, J.; Luo,
J.; Wen, P.; Huang, G. S.; Liang, Y. M. Synlett 2010, 1071.
(9) Recent examples: (a) Xu, X.; Lu, H. J.; Ruppel, J. V.; Cui, X.; de
Mesa, S. L.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292.
(b) Zhu, S. F.; Xu, X.; Perman, J. A.; Zhang, X. P. J. Am. Chem. Soc. 2010,
132, 12796. (c) Doyle, M. P. Angew. Chem., Int. Ed. 2009, 48, 850.
(d) Zhu, S. F.; Ruppel, J. V.; Lu, H. J.; Wojtas, L.; Zhang, X. P. J. Am.
Chem. Soc. 2008, 130, 5042. (e) Zhu, S.; Perman, J. A.; Zhang, X. P.
Angew. Chem., Int. Ed. 2008, 47, 8460. (f) Chen, Y.; Ruppel, J. V.; Zhang,
X. P. J. Am. Chem. Soc. 2007, 129, 12074.
Figure 1. Optical spectra of α-oligofurans F1−4 in THF.
In summary, we have developed a new Co(II) metalloradical-
catalyzed system for the regioselective synthesis of furans by
cyclization of alkynes with diazocarbonyls. This metalloradical
cyclization has a wide substrate scope and an exceptionally high
degree of functional group tolerance, permitting effective access
to multisubstituted furans with diverse functionalities, and it was
successfully applied to the construction of O-biheterocycles and
α-oligofurans through double and iterative radical cyclization
processes, respectively. This first demonstration of Co(II)-based
metalloradical catalysis for five-membered heterocyclization
involving tandem radical addition to CC and CO bonds
may stimulate the development of new catalytic radical
cyclization processes for selective syntheses of more diverse
carbo- and heterocycles.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and analytical data. This material is available
■
S
(10) (a) Lu, H. J.; Dzik, W. I.; Xu, X.; Wojtas, L.; de Bruin, B.; Zhang, X.
P. J. Am. Chem. Soc. 2011, 133, 8518. (b) Dzik, W. I.; Xu, X.; Zhang, X.
P.; Reek, J. N. H.; de Bruin, B. J. Am. Chem. Soc. 2010, 132, 10891.
(11) Cui, X.; Xu, X.; Lu, H. J.; Zhu, S. F.; Wojtas, L.; Zhang, X. P. J. Am.
Chem. Soc. 2011, 133, 3304.
AUTHOR INFORMATION
Corresponding Author
Notes
■
(12) Ruppel, J. V.; Jones, J. E.; Huff, C. A.; Kamble, R. M.; Chen, Y.;
Zhang, X. P. Org. Lett. 2008, 10, 1995.
The authors declare no competing financial interest.
(13) (a) Chuprakov, S.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc.
2005, 127, 3714. (b) Liao, L. A.; Zhang, F.; Yan, N.; Golen, J. A.; Fox, J.
M. Tetrahedron 2004, 60, 1803.
(14) Using [Co(TPP)] as the catalyst resulted in much slower
reactions under the same conditions and gave poor product yields.
(15) (a) Chen, J.; Ni, S. J.; Ma, S. M. Synlett 2011, 931. (b) Chen, J.;
Ma, S. M. Chem.Asian J. 2010, 5, 2415. (c) Ma, S. M.; Zhang, J. L. J.
Am. Chem. Soc. 2003, 125, 12386. (d) Rubin, M.; Ryabchuk, P. G. Chem.
Heterocycl. Compd. 2012, 48, 126.
(16) Under the current catalytic conditions, internal alkynes were
ineffective substrates for both cyclopropenation and furan formation.
(17) (a) Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. Rev.
1999, 99, 1991. (b) Ryu, I.; Sonoda, N.; Curran, D. P. Chem. Rev. 1996,
96, 177.
ACKNOWLEDGMENTS
We are grateful for financial support by NSF (CHE-1152767)
and NIH (R01-GM098777).
■
REFERENCES
■
(1) (a) Hou, X. L.; Yang, Z.; Wong, H. N. C. Prog. Heterocycl. Chem.
2003, 15, 167. (b) Keay, B. A.; Dibble, P. W. In Comprehensive
Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V.,
Eds.; Elsevier: Oxford, U.K., 1997; Vol. 2, p 395.
(2) (a) Gidron, O.; Shimon, L. J. W.; Leitus, G.; Bendikov, M. Org. Lett.
2012, 14, 502. (b) Gidron, O.; Dadvand, A.; Sheynin, Y.; Bendikov, M.;
Perepichka, D. F. Chem. Commun. 2011, 47, 1976. (c) Bunz, U. H. F.
Angew. Chem., Int. Ed. 2010, 49, 5037. (d) Gidron, O.; Diskin-Posner, Y.;
Bendikov, M. J. Am. Chem. Soc. 2010, 132, 2148.
(18) Huet, F.; Lechevallier, A.; Conia, J. M. Chem. Lett. 1981, 1515.
19984
dx.doi.org/10.1021/ja309446n | J. Am. Chem. Soc. 2012, 134, 19981−19984