ORGANIC
LETTERS
2012
Vol. 14, No. 24
6162–6165
Substituted Imidazo[1,2‑a]pyridines
as β‑Strand Peptidomimetics
Chang Won Kang, Yongmao Sun, and Juan R. Del Valle*
Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute,
Tampa, Florida 33612, United States
Received October 16, 2012
ABSTRACT
New conformationally extended dipeptide surrogates based on an imidazo[1,2-a]pyridine scaffold are described. Efficient synthesis and
incorporation into host peptides affords structures with native side-chain functionality and hydrogen bonding elements on one face of the
backbone. Structural analysis by NMR suggests that model peptidomimetics adopt a β-strand-like conformation in solution.
β-Strands are key structural motifs in a number of
proteinꢀprotein interfaces relevant to human disease.1
For example, the Akt-GSK3β,2 Ras-Raf1,3 and KRas-
FTase4 interactions are all implicated in oncogenesis
and involve the recognition of an extended or β-strand
domain. Isolated β-strand peptides are also substrates for
various proteolytic enzymes5 and major histocompatibility
complex (MHC) proteins.6 Conformational mimicry of
β-strands has thus gained increasing attention as a strategy
toward new chemical probes and therapeutics.7
rigidity.7 In these cases, enhanced stability may require
large scaffolding elements or complementary strands that
are auxiliary toa sequenceof interest. The incorporation of
constrainedresiduesorbackboneisostereswithinextended
host peptides represents a more “minimalist” approach
toward peptidomimetic drug candidates. The utility of
hybrid peptides featuring β-strand prosthetics such as
the Hao subunit,8 @-tide residues,9 and other dipeptide
surrogates10 have been demonstrated in various applica-
tions. The development of artificial β-strands comprised
entirely of nonpeptide subunits has also emerged as an
approach toward novel proteomimetic foldamers.11
Synthetic templated β-strands/sheets often feature
β-hairpin or macrocyclic motifs to impart conformational
Our interest in peptidomimetics targeting the Akt-
GSK3β interaction12 led us to explore scaffolds that could
be easily prepared and incorporated into host sequences,
ꢀ
ꢀ
(1) (a) Dou, Y.; Baisnee, P.-F.; Pollastri, G.; Pecout, Y.; Nowick, J.;
Baldi, P. Bioinformatics 2004, 20, 2767. (b) Somers, W. S.; Phillips,
S. E. V. Nature 1992, 359, 387. (c) Puglisi, J. D.; Chen, L.; Blanchard, S.;
Frankel, A. D. Science 1995, 270, 1200. (d) Derrick, J. P.; Wigley, D. B.
Nature 1992, 359, 752. (e) Colon, W.; Kelly, J. W. Biochemistry 1992, 31,
8654.
(8) (a) Nowick, J. S.; Chung, D. M.; Maitra, K.; Maitra, S.; Stigers,
K. D.; Sun, Y. J. Am. Chem. Soc. 2000, 122, 7654. (b) Nowick, J. S.;
Cary, J. M.; Tsai, J. H. J. Am. Chem. Soc. 2001, 123, 5176.
(9) Phillips, S. T.; Rezac, M.; Abel, U.; Kossenjans, M.; Bartlett,
P. A. J. Am. Chem. Soc. 2002, 124, 58.
(2) Yang, J.; Cron, P.; Good, V. M.; Thompson, V.; Hemmings,
B. A.; Barford, D. Nat. Struct. Mol. Biol. 2002, 9, 940.
(3) Nassar, N.; Horn, G.; Herrmann, C.; Block, C.; Janknecht, R.;
Wittinghofer, A. Nat. Struct. Biol. 1996, 3, 723.
(4) (a) Strickland, C. L.; Windsor, W. T.; Syto, R.; Wang, L.; Bond,
R.; Wu, Z.; Schwartz, J.; Le, H. V.; Beese, L. S.; Weber, P. C.
Biochemistry 1998, 37, 16601. (b) Long, S. B.; Casey, P. J.; Beese, L. S.
Structure 2000, 8, 209.
(5) (a) Tyndall, J. D. A.; Fairlie, D. P. J. Mol. Recog. 1999, 12, 363. (b)
Fairlie, D. P.; Tyndall, J. D. A.; Reid, R. C.; Wong, A. K.; Abbenante,
G.; Scanlon, M. J.; March, D. R.; Bergman, D. A.; Chai, C. L. L.;
Burkett, B. A. J. Med. Chem. 2000, 43, 1271.
(6) Brown, J. H.; Jardetzky, T. S.; Gorga, J. C.; Stern, L. J.; Urban,
R. G.; Strominger, J. L.; Wiley, D. C. Nature 1993, 364, 33.
(7) Loughlin, W. A.; Tyndall, J. D. A.; Glenn, M. P.; Hill, T. A.;
Fairlie, D. P. Chem. Rev. 2010, 110, PR32.
(10) (a) Blomberg, D.; Brickmann, K.; Kihlberg, J. Tetrahedron 2006,
62, 10937. (b) Qian, Y.; Blaskovich, M. A.; Saleem, M.; Seong, C. M.;
Wathen, S. P.; Hamilton, A. D.; Sebti, S. M. J. Biol. Chem. 1994, 269,
12410. (c) Qian, Y.; Marugan, J. J.; Fossum, R. D.; Vogt, A.; Sebti,
S. M.; Hamilton, A. D. Bioorg. Med. Chem. 1999, 7, 3011. (d) Grandy,
D.; Shan, J.; Zhang, X.; Rao, S.; Akunuru, S.; Li, H.; Zhang, Y.;
Alpatov, I.; Zhang, X. A.; Lang, R. A.; Shi, D. L.; Zheng, J. J. J. Biol.
Chem. 2009, 284, 16256. (e) Martin, S. F.; Austin, R. E.; Oalmann, C. J.;
Baker, W. R.; Condon, S. L.; de Lara, E.; Rosenberg, S. H.; Spina, K. P.;
Stein, H. H.; Cohen, J.; et al. J. Med. Chem. 1992, 35, 1710. (f) Cluzeau,
J.; Lubell, W. D. Pept. Sci. 2005, 80, 98. (g) Hanessian, S.; McNaughton-
Smith, G.; Lombart, H. G.; Lubell, W. D. Tetrahedron 1997, 53, 12789.
r
10.1021/ol302850n
Published on Web 12/04/2012
2012 American Chemical Society