Paper
RSC Advances
product and Ru(0) species. Then the catalytic cycle continues
with reactions with PhI(OOCCF3)2 and Clꢁ ion to regenerate
active Ru(II) species.
D.-G. Yu, M. Yu, X. Zhou, X.-Y. Lu, K. Huang, S.-F. Zheng,
B. –J. Li and Z.-J. Shi, Nat. Chem., 2010, 2, 1044; (c)
N. E. Leadbeater, Nat. Chem., 2010, 2, 1007; (d) W. Liu,
H. Cao, H. Zhang, K. H. Chang, C. He, H. Wang,
F. Y. Kwong and A. Lei, J. Am. Chem. Soc., 2010, 132, 16737;
(e) S. Yanagisawa, K. Ueda, T. Taniguchi and K. Itami, Org.
Lett., 2008, 10, 4673 and references cited therein; ibid.
7 (a) S. Fernandez, M. Pfeffer, V. Ritleng and C. Sirlin,
Organometallics, 1999, 18, 2390; (b) H. C. Brown and
J. B. Campbell, Aldrichimica Acta, 1981, 1, 14.
8 (a) A. R. Dick and M. Sanford, Tetrahedron, 2006, 62, 2439; (b)
J. Bouffard and K. Itami, Top. Curr. Chem., 2010, 292, 231; (c)
L. Ackermann and R. Vicente, Top. Curr. Chem., 2010, 292,
211; (d) E. Beck and M. Guant, Top. Curr. Chem., 2010, 292,
85; (e) T. W. Lyons and S. S. Sanford, Chem. Rev., 2010,
110, 1147; (f) S. Oi, S. Fukita and Y. Inoue, Chem.
Commun., 1998, 2439; (g) L. Ackermann, A. Althammer and
R. Born, Tetrahedron, 2008, 64, 6115; (h) D. A. Colby,
A. S. Tsai, R. G. Bergman and J. A. Ellman, Acc. Chem. Res.,
2012, 45, 814.
In summary, we developed a novel direct C–H arylation
protocol using Ru-catalyzed oxidative coupling of arylboronic
acids with arenes bearing 2-pyridyl and 2-pyrazole functionality.
The outstanding site-selectivity of the ruthenium catalyst was
reected by the fact that lack of formation of undesired biary-
lated product originating from high nucleophilic reactivity of
arylboronic acids. This operationally simple C–H functionali-
zation was accomplished, in particular, through the use of
hyper-valent based iodine based PhI(OCOCF3)2 reagent as
oxidant in catalytic amounts under fairly mild conditions. The
proposed charge transfer complex formation step in the
proposed mechanism may partly explain observed high site-
selectivity for monoarylated products for as many as 23
substrate combinations.
Acknowledgements
GMR and NSR thank the council of scientic and industrial
research (CSIR), and UGC, New Delhi, India for fellowship and
nancial support.
9 For selective mono-arylation using ortho- and meta-
substituted
2-phenylpyridine
derivatives
see:
(a)
L. Ackermann, R. Vicente and A. Althammer, Org. Lett.,
2008, 10, 2299; (b) L. Ackermann, R. Vicente,
H. K. Potukuchi and V. Pirovano, Org. Lett., 2010, 12, 5032;
(c) L. Ackermann, P. Novak, R. Vicente, V. Pirovano and
H. K. Potukuchi, Synthesis, 2010, 13, 2245; (d)
L. Ackermann and P. Novak, Org. Lett., 2009, 11, 4966; (e)
Notes and references
1 L. Ackermann, Moderan Arylation Methods ;Wiely-VCH: Wien-
heim, 2009.
2 G. Dyker, Handbook of C–H Transformations; Wiely-VCH:
Weiheim. 2005.
V.
S.
Thirunavukkarasu,
K.
Raghuvanshi
and
L. Ackermann, Org. Lett., 2013, 15, 3286; for [Ru(p-cymene)
Cl2]2 and arylboronic acid based direct arylation reaction
promoted by BiBr3 additive in the presence of molecular
oxygen as stoichiometric oxidant see ; (f) H. Li, W. Wei,
Y. Xu, C. Zhang and X. Wan, Chem. Commun., 2011, 47,
1497; (g) D. Kalyani, N. R. Deprez, L. V. Desai and
M. S. Sanford, J. Am. Chem. Soc., 2005, 127, 7330; (h)
N. R. Deprez and M. S. Sanford, J. Am. Chem. Soc., 2009,
131, 11234; (i) S. Kirchberg, T. Vogler and A. Studer,
Synlett, 2008, 18, 2841; (j) T. Vogler and A. Studer, Org.
Lett., 2008, 10, 129; (k) M.-Z. Lu, P. Lu, Y.-H. Xu and T. –
P. Loh, Org. Lett., 2014, 16, 2614.
3 For selected representative general reviews on C–H bond
functionalisations, see: (a) W. L. Thomas and S. S. Melanie,
Chem. Rev., 2010, 110, 1147; (b) A. Gunay and
K. H. Theopold, Chem. Rev., 2010, 107, 1060; (c)
A. I. M. Ibraheem, H. B. Barnard, B. M. Marder,
M. M. Jaclun and F. H. John, Chem. Rev., 2010, 110, 824;
(d) S. Petr, J. K. Taylor and J. S. F. Ian, Chem. Rev., 2010,
110, 824; (e) C. W. Mechael, Chem. Rev., 2010, 110, 725; (f)
E. D. Graham and H. C. Robert, Chem. Rev., 2010, 110, 681;
(g) F. Kakiuchi and T. Kochi, Synthesis, 2008, 3013; (h)
R. G. Bergman, Nature, 2007, 446, 391; (i) K. Godula and
D. Sames, Science, 2006, 312, 67 and references cited therein. 10 For selective diarylation using ortho- and meta-substituted 2-
4 For recent review on enzymatic functionalizations of C–H
bonds, see: J. C. Lewis, P. S. Coelho and F. H. Amold,
Chem. Soc. Rev., 2011, 40, 2003.
phenylpyridine derivatives see: (a) F. Pozgan and
P. H. Dixneuf, Adv. Synth. Catal., 2009, 351, 1737; (b)
P. B. Arockiam, C. Fischmeister, C. Bruneau and
P. H. Dixneuf, Angew. Chem., Int. Ed., 2010, 49, 6629; (c)
L. Ackermann, Org. Lett., 2005, 7, 3123; (d) P. Arockiam,
V. Poirier, C. Fischmeister, C. Bruneau and P. H. Dixneuf,
Green Chem., 2009, 11, 1871; (e) I. Ozdemir, S. Demir,
5 For select reviews on photochemical transformations, see:
(a) V. Dichiarante, M. Fagnoni, A. Albini, In Modern
Arylation Methods,L. Ackermann, Wiely –VCJ, Weinheim,
2009, p. 513; (b) D. Ravelli, D. Dondi, M. Fagnoni and
A. Albini, Chem. Soc. Rev., 2009, 38, 1999; (c) S. E. Vaillard,
B. Schulte, A. Studer, Radical reactions:In Modern Arylation
Methods; ed: L. Ackermann, Wiely-VCH: Weinheim, 2009;
p 475.
¨
B. Cuetinkaya, C. Gourlaouen, F. Maseras, C. Bruneau and
P. H. Dixneuf, J. Am. Chem. Soc., 2008, 130, 1156; (f) S. Oi,
S. Fukita, N. Hirata, N. Watanuki, S. Miyano and Y. Inoue,
Org. Lett., 2001, 3, 2579.
6 For recent representative examples of direct arylations under 11 For selective monoalkylation using substituted 2-
transition-metal-free
E. Shirakawa, K.-I. Itoh, T. Higashino and T. Hayashi, J.
Am. Chem. Soc., 2010, 132, 15537; (b) C.-L. Sun, H. Li,
reaction conditions,
see:
(a)
phenylpyridine derivatives see: (a) L. Ackermann, P. Novak,
R. Vicente and N. Hofmann, Angew. Chem., Int. Ed., 2009,
48, 6045; (b) N. Chatani, Y. Ie and S. Murai, J. Org. Chem.,
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 105347–105352 | 105351