ORGANIC
LETTERS
2012
Vol. 14, No. 24
6266–6269
Three-Component Reaction of
Propargyl Amines, Sulfonyl Azides,
and Alkynes: One-Pot Synthesis
of Tetrasubstituted Imidazoles
Zheng Jiang, Ping Lu,* and Yanguang Wang*
Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
pinglu@zju.edu.cn; orgwyg@zju.edu.cn
Received November 3, 2012
ABSTRACT
An efficient and straightforward strategy for the synthesis of tetrasubstituted imidazoles from propargyl amines, sulfonyl azides, and terminal
alkynes is described. N-Sulfonyl ketenimine and aminoallene are believed to be the key intermediates for this two-step one-pot transformation.
Imidazole and its derivatives are an important class of
heterocyclic compounds, which are widely used in biology
as inhibitors,1 and are also used in medicinal chemistry2
and as functionalized materials.3 Classic methods for
the synthesis of imidazoles include DebusÀRadziszewski
imidazole synthesis,4 Weidenhagen imidazole synthesis,5
and Van Leusen imidazole synthesis.6 Recently, a number
of multicomponent syntheses of imidazoles have also
been developed.7 Nonetheless, the development of more
efficient and versatile approaches to functionalized im-
idazoles remains very important.
Since Staudinger and Hauser prepared the first keteni-
mine in 1921,8 this class of reactive intermediates has been
(1) (a) Chabin, R. M.; McCauley, E.; Calaycay, J. R.; Kelly, T. M.;
MacNaul, K. L.; Wolfe, G. C.; Hutchinson, N. I.; Madhusudanaraju, S.;
Schmidt, J. A.; Kozarich, J. W.; Wong, K. K. Biochemistry 1996, 35,
9567. (b) Jensen, N. P.; Schmitt, S. M.; Windholz, T. B.; Shen, T. Y.
J. Med. Chem. 1972, 15, 341. (c) Swett, L. R.; Yellin, T. O. J. Med. Chem.
1970, 13, 968. (d) Herrador, M. M.; Buruaga, J. S.; Suarez, M. D. J. Med.
Chem. 1985, 28, 146. (e) Gising, J.; Nilsson, M. T.; Odell, L. R.; Yahiaoui,
S.; Lindh, M.; Iyer, H.; Sinha, A. M.; Srinivasa, B. R.; Larhed, M.;
(7) (a) De Moliner, F.; Hulme, C. Org. Lett. 2012, 14, 1354. (b) Li, S.;
Li, Z. K.; Yuan, Y. F.; Peng, D. J.; Li, Y. J.; Zhang, L. S.; Wu, Y. M. Org.
Lett. 2012, 14, 1130. (c) Xiao, Y. J.; Zhang, L. M. Org. Lett. 2012, 14,
4662. (d) Guchhait, S. K.; Chandgude, A. L.; Priyadarshani, G. J. Org.
Chem. 2012, 77, 4438. (e) Hu, B.; Wang, Z.; Ai, N.; Zheng, J.; Liu, X. H.;
Shan, S.; Wang, Z. W. Org. Lett. 2011, 13, 6362. (f) Petit, S.; Fruit, C.;
Bischoff, L. Org. Lett. 2010, 12, 4928. (g) Jiang, B.; Wang, X.; Shi, F.;
Tu, S. J.; Ai, T.; Ballew, A.; Li, G. G. J. Org. Chem. 2009, 74, 9486.
(8) Staudinger, H.; Hauser, E. Helv. Chim. Acta 1921, 4, 887.
(9) For recent reviews, see: (a) Lu, P.; Wang, Y. G. Chem. Soc. Rev.
2012, 41, 5687. (b) Kim, S. H.; Park, S. M.; Choi, J. H.; Chang, S.
Chem.;Asian. J. 2011, 6, 2618. (c) Lu, P.; Wang, Y. G. Synlett 2010,
165. (d) Yoo, E. J.; Chang, S. Curr. Org. Chem. 2009, 13, 1766.
(10) (a) Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038.
(b) Cho, S. H.; Yoo, E. J.; Bae, I.; Chang, S. J. Am. Chem. Soc. 2005, 127,
16046.
(11) (c) Yoo, E. J.; Bae, I.; Cho, S. H.; Han, H.; Chang, S. Org. Lett.
2006, 8, 1347. (d) Cho, S. H.; Chang, S. Angew. Chem., Int. Ed. 2007, 46,
1897. (e) Yoo, E. J.; Chang, S. Org. Lett. 2008, 10, 1163. (f) Cho, S. H.;
Chang, S. Angew. Chem., Int. Ed. 2008, 47, 2836. (g) Yoo, E. J.; Ahlquist,
M.; Bae, I.; Sharpless, K. B.; Fokin, V. V.; Chang, S. J. Org. Chem. 2008,
73, 5520. (h) Kim, J.; Lee, Y.; Lee, J.; Do, Y.; Chang, S. J. Org. Chem.
2008, 73, 9454. (i) Yoo, E. J.; Park, S. H.; Lee, S. H.; Chang, S. Org. Lett.
2009, 11, 1155.
ꢀ
Mowbray, S. L.; Karlen, A. J. Med. Chem. 2012, 55, 2894. (f) Lombardino,
ꢀ
J. G.; Wiseman, E. H. J. Med. Chem. 1974, 17, 1182. (g) Zaric, S. D.;
ꢀ
Popovic, D. M.; Knapp, E. W. Biochemistry. 2001, 40, 7914.
(2) (a) Bhatnagar, A.; Sharma, P. K.; Kumar, N. Int. J. PharmTech.
Res. 2011, 3, 268. (b) De Luca, L. Curr. Med. Chem. 2006, 13, 1.
(c) Boiani, M.; Gonzalez, M. Mini-Rev. Med. Chem. 2005, 5, 68.
(3) Bromberg, L.; Chen, L.; Chang, E. P.; Wang, S.; Hatton, T. A.
Chem. Mater. 2010, 22, 5383.
(4) (a) Debus, H. Ann. 1858, 107, 204. (b) Radziszewski, B. Ber 1882,
15, 2706.
(5) Huebner, C. F. J. Am. Chem. Soc. 1951, 73, 4667.
(6) (a) Gracias, V.; Gasiecki, A. F.; Djuric, S. W. Tetrahedron Lett.
2005, 46, 9049. (b) Gracias, V.; Darczak, D.; Gasiecki, A. F.; Djuric,
S. W. Tetrahedron Lett. 2005, 46, 9053. (c) Gracias, V.; Gasiecki, A. F.;
Pagano, T. G.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 8873. (d) Beebe,
X.; Gracias, V.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 3225. (e) Wang,
L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick,
S. M.; Gherke, L.; Credo, R. B.; Hui, Y. H.; Marsh, K.; Warner, R.; Lee,
J. Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L.
J. Med. Chem. 2002, 45, 1697.
r
10.1021/ol303023y
Published on Web 11/30/2012
2012 American Chemical Society