Table 3 Scope of indoles and glycine derived dipeptides
amino acids and peptides. Further studies, employing different
peptides and nucleophiles in this new combined photoredox and
Lewis acid catalysis protocol, are currently in progress.
S.-Q. Zhu is grateful to the CSC (Chinese Scholarship
Council) for a fellowship.
Notes and references
Entrya
R3
R4
R5
6
Yieldb (%)
1 (a) A. Strecker, Ann. Chem. Pharm., 1850, 75, 27–45; (b) I. Ugi,
Angew. Chem., Int. Ed. Engl., 1962, 1, 8–20; (c) N. A. Petasis and
I. A. Zavialov, J. Am. Chem. Soc., 1997, 119, 445–446.
2 (a) L. Zhao, O. Basle and C.-J. Li, Proc. Natl. Acad. Sci. U. S. A.,
2009, 106, 4106–4111; (b) L. Zhao and C.-J. Li, Angew. Chem., Int.
Ed., 2008, 47, 7075–7078.
3 J. Xie and Z.-Z. Huang, Angew. Chem., Int. Ed., 2010, 49,
10181–10185.
4 G. Zhang, Y. Zhang and R. Wang, Angew. Chem., Int. Ed., 2011,
50, 10429–10432.
5 Reviews including the photochemical oxidations of tertiary amines:
(a) G. Pandey, Synlett, 1992, 546–552; (b) P. Renaud and L. Giraud,
Synthesis, 1996, 913–926; (c) J. Cossy, in Radicals in Organic Synthesis,
ed. P. Renaud and M. P. Sibi, vol. 1, pp. 229–249.
6 (a) A. G. Condie, J. C. Gonzalez-Gomez and C. R. J. Stephenson,
J. Am. Chem. Soc., 2010, 132, 1464–1465; (b) D. B. Freeman,
L. Furst, A. G. Condie and C. R. J. Stephenson, Org. Lett., 2012,
14, 94–97; (c) C.-H. Dai, F. Meschini, J. M. R. Narayanam and
C. R. J. Stephenson, J. Org. Chem., 2012, 77, 4425–4431.
7 (a) J. Xuan, Y. Cheng, J. An, L.-Q. Lu, X.-X. Zhang and
W.-J. Xiao, Chem. Commun., 2011, 47, 8337–8339; (b) Y.-Q. Zou,
L.-Q. Lu, L. Fu, N.-J. Chang, J. Rong, J.-R. Chen and W.-J. Xiao,
Angew. Chem., Int. Ed., 2011, 50, 7171–7175.
1
2
3
4
5
6
7
8
9
10
H
H
H
H
H
H
H
Me
Me
TBS
H
H
H
2-Ph
6-Me
7-Me
2-Ph
5-Br
5-Br
H
Et
Me
iPr
Et
6a
6b
6c
6d
6e
6f
6g
6h
6i
60
66
63
52
62
76
50
55
51
68
Et
Et
iPr
Et
iPr
Et
6j
a
Reaction conditions: 7 (0.2 mmol), 2 (0.3 mmol), [Ir(ppy)2bpy]PF6
(1 mol%), Zn(OAc)2 1.0 equiv., MeCN (2.0 mL), 11 W fluorescent
b
bulb 48 h. Yield of the isolated product.
8 (a) M. Rueping, C. Vila, R. M. Koenigs, K. Poscharny and
D. C. Fabry, Chem. Commun., 2011, 47, 2360–2362; (b) M. Rueping,
S. Zhu and R. M. Koenigs, Chem. Commun., 2011, 47, 8679–8681;
(c) M. Rueping, D. Leonori and T. Poisson, Chem. Commun., 2011, 47,
9615–9617; (d) M. Rueping, S. Zhu and R. M. Koenigs, Chem.
Commun., 2011, 47, 12709–12711; (e) M. Rueping, R. M. Koenigs,
K. Poscharny, D. C. Fabry, D. Leonori and C. Vila, Chem.–Eur. J.,
2012, 18, 5170–5174.
Scheme 2 Proposed mechanism for the relay catalysis.
product was isolated in 60% yield. In addition, various
substituted glycine derived dipeptides 5 and indoles 2 were
subjected to the optimized conditions and the corresponding
arylated dipeptides were obtained in moderate to good yields
(Table 3). It is worth mentioning that no peptide degradation
has been observed with this combined catalysis protocol.
A catalytic cycle for the present transformation is proposed
in Scheme 2. Upon irradiation, IrIII+ is excited to IrIII+* and
reductively quenched by A to produce IrII+ and radical cation
B via SET oxidation. Subsequently, the radical amine cation B
is converted into intermediate C, an a-carbon hydroperoxide
or hemi aminal, which under the influence of the Lewis acid
catalyst forms the activated electrophile D. Reaction with the
nucleophile gives the functionalized product E. In addition A
can also react with the generated superoxide anion to give C.
In conclusion, we have developed for the first time a relay
catalysis protocol for the C–H functionalization of glycine deriva-
tives and glycine derived dipeptides by combining visible-light
photoredox catalysis and Lewis acid catalysis. Importantly the
generation and activation of the imine intermediates can only be
achieved by applying this combined catalysis approach and neither
over oxidation to a-oxo esters nor peptide fragmentation has been
observed. The results reported not only demonstrate the use of
secondary amines in photoredox catalysis but also pave the way for
the use of other nucleophiles for direct a-amino acid and peptide
modification. The operational simplicity and practicability, as well
as the mild reaction conditions using visible light as the energy
source promote the protocol as an attractive way to functionalize
9 (a) D. P. Hari and B. Konig, Org. Lett., 2011, 13, 3852–3855;
¨
(b) Z. Xie, C. Wang, K. E. deKrafft and W. Lin, J. Am. Chem.
Soc., 2011, 133, 2056–2059; (c) C. Wang, Z. Xie, K. E. deKrafft
and W. Lin, J. Am. Chem. Soc., 2011, 133, 13445–13454;
(d) S. Maity, M. Zhu, R. Shinabery and N. Zheng, Angew. Chem.,
Int. Ed., 2011, 51, 222–226; (e) Q. Liu, Y.-N. Li, H.-H. Zhang,
B. Chen, C.-H. Tung and L.-Z. Wu, Chem.–Eur. J., 2012, 18,
620–627; (f) Y.-H. Pan, S. Wang, C. W. Kee, E. Dubuisson,
Y.-Y. Yang, K. P. Loha and C.-H. Tan, Green Chem., 2011, 13,
3341–3343; (g) P. Kohls, D. Jadhav, G. Pandey and O. Reiser, Org.
Lett., 2012, 14, 672–675; (h) Y. Miyake, K. Nakajima and
Y. Nishibayashi, J. Am. Chem. Soc., 2012, 134, 3338–3341;
(i) G.-l. Zhao, C. Yang, L. Guo, H.-N. Sun, C. Chen and
W.-J. Xia, Chem. Commun., 2012, 48, 2337–2339.
10 For latest reviews on photoredox catalysis directed towards
synthetic applications see: (a) K. Zeitler, Angew. Chem., Int. Ed.,
2009, 48, 9785–9789; (b) T. P. Yoon, M. A. Ischay and J. Du, Nat.
Chem., 2010, 2, 527–532; (c) J. M. R. Narayanam and C. R. J.
Stephenson, Chem. Soc. Rev., 2011, 40, 102–113; (d) F. Teply,
Collect. Czech. Chem. Commun., 2011, 76, 859–917; (e) J. W.
Tucker and C. R. J. Stephenson, J. Org. Chem., 2012, 77,
1617–1622; (f) J. Xuan and W. J. Xiao, Angew. Chem., Int. Ed.,
2012, 51, 6828–6838; (g) M. A. Ischay and T. P. Yoon, Eur. J. Org.
Chem., 2012, 3359–3372; (h) L. Shi and W. J. Xiao, Chem. Soc.
Rev., 2012, DOI: 10.1039/c2cs35203f.
11 R. T. Dean, S. Fu, R. Stocker and M. J. Davies, Biochem. J., 1997,
324, 1–18.
12 In the absence of Lewis acid, the oxidized glycine was the major
product. See also copper catalyzed oxidations: J.-C. Wu,
R.-J. Song, Z.-Q. Wang, X.-C. Huang, Y.-X. Xie and J.-H. Li,
Angew. Chem., Int. Ed., 2012, 51, 3453–3457.
13 M. Rueping, B. J. Nachtsheim, S. A. Moreth and M. Bolte, Angew.
Chem., Int. Ed., 2008, 47, 593–596.
14 see ESIw.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.