ACS Medicinal Chemistry Letters
Letter
generally mirror that seen for ZSTK474 itself29 (Supplementary
Table 3 in the Supporting Information).
deficient cancers depend on PIK3CB. Proc. Natl. Acad. Sci. U.S.A.
2008, 105, 13057−13062.
(6) Jia, S.; Liu, Z.; Zhang, S.; Liu, P.; Zhang, L.; Lee, S. H.; Zhang, J.;
Signoretti, S.; Loda, M.; Roberts, T. M.; Zhao, J. J. Essential roles of
PI(3)K-p110beta in cell growth, metabolism and tumorigenesis.
Nature 2008, 454, 776−779.
(7) Shuttleworth, S. J.; Silva, F. A.; Cecil, A. R. L.; Tomassi, C. D.;
Hill, T. J.; Raynaud, F. I.; Clarke, P. A.; Workman, P. Progress in the
Preclinical Discovery and Clinical Development of Class I and Dual
Class I/IV Phosphoinositide 3-Kinase (PI3K) Inhibitors. Curr. Med.
Chem. 2011, 18, 2686−2714.
(8) Castillo, J. J.; Furman, M.; Winer, E. S. CAL-101: A
phosphatidylinositol-3-kinase p110-delta inhibitor for the treatment
of lymphoid malignancies. Expert Opin. Invest. Drugs 2012, 21, 15−22.
(9) Meadows, S. A.; Vega, F.; Kashishian, A.; Johnson, D.; Diehl, V.;
Miller, L. L.; Younes, A.; Lannutti, B. J. PI3Kdelta inhibitor, GS-1101
(CAL-101), attenuates pathway signaling, induces apoptosis, and
overcomes signals from the microenvironment in cellular models of
Hodgkin lymphoma. Blood 2012, 119, 1897−1900.
(10) Walker, E. H.; Perisic, O.; Ried, C.; Stephens, L.; Williams, R. L.
Structural insights into phosphoinositide 3-kinase catalysis and
signalling. Nature 1999, 402, 313−320.
(11) Zheng, Z. H.; Amran, S. I.; Zhu, J. X.; Schmidt-Kittler, O.;
Kinzler, K. W.; Vogelstein, B.; Shepherd, P. R.; Thompson, P. E.;
Jennings, I. G. Definition of the binding mode of a new class of
phosphoinositide 3-kinase alpha-selective inhibitors using in vitro
mutagenesis of non-conserved amino acids and kinetic analysis.
Biochem. J. 2012, 444, 529−535.
(12) Berndt, A.; Miller, S.; Williams, O.; Le, D. D.; Houseman, B. T.;
Pacold, J. I.; Gorrec, F.; Hon, W. C.; Liu, Y.; Rommel, C.; Gaillard, P.;
Ruckle, T.; Schwarz, M. K.; Shokat, K. M.; Shaw, J. P.; Williams, R. L.
The p110 delta structure: mechanisms for selectivity and potency of
new PI(3)K inhibitors. Nat. Chem. Biol. 2010, 6, 117−124.
(13) Camps, M.; Ruckle, T.; Ji, H.; Ardissone, V.; Rintelen, F.; Shaw,
J.; Ferrandi, C.; Chabert, C.; Gillieron, C.; Francon, B.; Martin, T.;
Gretener, D.; Perrin, D.; Leroy, D.; Vitte, P. A.; Hirsch, E.; Wymann,
M. P.; Cirillo, R.; Schwarz, M. K.; Rommel, C. Blockade of
PI3Kgamma suppresses joint inflammation and damage in mouse
models of rheumatoid arthritis. Nat. Med. 2005, 11, 936−943.
(14) Jackson, S. P.; Schoenwaelder, S. M.; Goncalves, I.; Nesbitt, W.
S.; Yap, C. L.; Wright, C. E.; Kenche, V.; Anderson, K. E.; Dopheide, S.
M.; Yuan, Y.; Sturgeon, S. A.; Prabaharan, H.; Thompson, P. E.; Smith,
G. D.; Shepherd, P. R.; Daniele, N.; Kulkarni, S.; Abbott, B.; Saylik, D.;
Jones, C.; Lu, L.; Giuliano, S.; Hughan, S. C.; Angus, J. A.; Robertson,
A. D.; Salem, H. H. PI 3-kinase p110beta: a new target for
antithrombotic therapy. Nat. Med. 2005, 11, 507−514.
(15) Knight, Z. A.; Gonzalez, B.; Feldman, M. E.; Zunder, E. R.;
Goldenberg, D. D.; Williams, O.; Loewith, R.; Stokoe, D.; Balla, A.;
Toth, B.; Balla, T.; Weiss, W. A.; Williams, R. L.; Shokat, K. M. A
pharmacological map of the PI3-K family defines a role for p110alpha
in insulin signaling. Cell 2006, 125, 733−747.
(16) Nylander, S.; Kull, B.; Bjorkman, J.; Ulvinge, J. C.; Oakes, N.;
Emanuelsson, B.; Andersson, M.; Skarby, T.; Inghardt, T.; Fjellstrom,
O.; Gustafsson, D. Human target validation of phosphoinositide 3-
kinase (PI3K)beta; effects on platelets and insulin sensitivity, using
AZD6482 a novel PI3Kbeta inhibitor. J. Thromb. Haemostasis 2012,
10, 2127−2136.
(17) Frazzetto, M.; Suphioglu, C.; Zhu, J.; Schmidt-Kittler, O.;
Jennings, I. G.; Cranmer, S. L.; Jackson, S. P.; Kinzler, K. W.;
Vogelstein, B.; Thompson, P. E. Dissecting isoform selectivity of PI3K
inhibitors: The role of non-conserved residues in the catalytic pocket.
Biochem. J. 2008, 414, 383−390.
(18) Lin, H.; Schulz, M. J.; Xie, R.; Zeng, J.; Luengo, J. I.; Squire, M.
D.; Tedesco, R.; Qu, J.; Erhard, K.; Mack, J. F.; Raha, K.; Plant, R.;
Rominger, C. M.; Ariazi, J. L.; Sherk, C. S.; Schaber, M. D.; McSurdy-
Freed, J.; Spengler, M. D.; Davis, C. B.; Hardwicke, M. A.; Rivero, R.
A. Rational Design, Synthesis, and SAR of a Novel Thiazolopyr-
imidinone Series of Selective PI3K-beta Inhibitors. ACS Med. Chem.
Lett. 2012, 3, 524−529.
In summary, on the basis of the observed X-ray structure of
ZSTK474 in PI3Kδ, a series of L-aminoacylpiperazine-
substituted analogues have been prepared that exhibit excellent
potency and selectivity for PI3Kβ isoforms. The configuration
of the amino acids is pivotal to the selectivity, underpinning a
well-defined interaction with the nonconserved binding site
residue D862. The inhibitors show an alternate mechanistic
basis for selectivity in comparison to other recently reported
selective inhibitors. The compounds show inhibition of PI3Kβ-
dependent function in PTEN-deficient cancer cells and
effectively inhibit growth of the cell line. The compounds
provide a basis for the further study of PI3Kβ function in a
number of disease contexts.
ASSOCIATED CONTENT
* Supporting Information
■
S
Full experimental details relating to the synthesis of compounds
and methods for biochemical and cellular assays. This material
AUTHOR INFORMATION
Corresponding Author
*Corresponding Author Philip Thompson; Tel: +613
■
Funding
J.-A.P. and M.S.M. are recipients of Australian Postgraduate
Award (APA) Scholarships. M.S.M. was the recipient of a top-
up scholarship from the CRC for Cancer Therapeutics. This
work was funded through the National Institutes of Health
Grants CA43460 and CA62924, the Virginia and D.K. Ludwig
Fund for Cancer Research (USA), the Cancer Council Victoria
No. 436708, and a National Health and Medical Research
Council Grant No. 545943 (Australia).
Notes
The authors declare no competing financial interest.
ABBREVIATIONS
■
ATP, adenosine triphosphate; Fmo, fluorenylmethyloxycarbon-
yl; PI3K, phosphoinositide 3-kinase; PTEN, phosphatase and
tensin homologue
REFERENCES
■
(1) Vanhaesebroeck, B.; Stephens, L.; Hawkins, P. PI3K signalling:
the path to discovery and understanding. Nat. Rev. Mol. Cell. Biol.
2012, 13, 195−203.
(2) Courtney, K. D.; Corcoran, R. B.; Engelman, J. A. The PI3K
Pathway As Drug Target in Human Cancer. J. Clin. Oncol. 2010, 28,
1075−1083.
(3) Samuels, Y.; Wang, Z. H.; Bardelli, A.; Silliman, N.; Ptak, J.;
Szabo, S.; Yan, H.; Gazdar, A.; Powell, D. M.; Riggins, G. J.; Willson, J.
K. V.; Markowitz, S.; Kinzler, K. W.; Vogelstein, B.; Velculescu, V. E.
High frequency of mutations of the PIK3CA gene in human cancers.
Science 2004, 304, 554−554.
(4) Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S. I.;
Puc, J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; Bigner, S. H.;
Giovanella, B. C.; Ittmann, M.; Tycko, B.; Hibshoosh, H.; Wigler, M.
H.; Parsons, R. PTEN, a putative protein tyrosine phosphatase gene
mutated in human brain, breast, and prostate cancer. Science 1997,
275, 1943−1947.
(5) Wee, S.; Wiederschain, D.; Maira, S. M.; Loo, A.; Miller, C.;
deBeaumont, R.; Stegmeier, F.; Yao, Y. M.; Lengauer, C. PTEN-
209
dx.doi.org/10.1021/ml300336j | ACS Med. Chem. Lett. 2013, 4, 206−210