290
S. Nagarajan et al. / Bioorg. Med. Chem. Lett. 23 (2013) 287–290
vascularization compared to other phthalimide derivatives and con-
trol. The number of length and junctions of tubule complexes was
quantified.
References and notes
1. Li, J.; Zhang, Y.-P.; Kirsner, R. Micros. Res. Tech. 2003, 60, 107.
2. Reynolds, L. P.; Grazul-Bilska, A. T.; Redmer, D. A. Int. J. Exp. Pathol. 2002, 83,
151.
Comparing the activity of five phthalimide derivatives and tha-
lidomide, NK037 and NK042 showed significant reduction than
other three derivatives and thalidomide thus, demonstrating a
strong anti-angiogenic effect. NK041 showed significant reduction
in number of length and junctions of tubule complexes when com-
pared to thalidomide. However, NK0139A and NK0148 failed to
show stronger effect than thalidomide while efficiently blocked
ex vivo angiogenesis compare to control. This may be due to the af-
fect by the analogs NK0139 and NK0148 on interconnections or
the branching points of the tubules without any decrease in length
and size, while NK041 affected all the angiogenesis parameters.
Endothelial cells organize themselves in a fashion to branch at
some point to form vasculature, which is predominantly sprouting.
We speculate that NK0139 and NK0148 specifically interfere with
tip cells, which leads the sprouting and thereby branching. That
could be the reason why these two analogs decrease the number
of junctions only.
3. Matter, A. Drug Discovery Today 2001, 6, 1005.
4. Bodolay, E.; Koch, A. E.; Kim, J.; Szegedi, Z. J. Cell. Mol. Med. 2002, 6, 357.
5. Noma, H.; Funatsu, H.; Yamashita, H.; Kitano, S.; Mishima, H. K.; Hori, S. Arch.
Ophthalmol. 2002, 120, 1075.
6. Fantl, W. J.; Rosenberg, S. Anti-angiogenesis as a therapeutic strategy for
cancer. In Annual Reports in Medicinal Chemistry; Doherty, A. M., Ed.; Academic:
San Diego, CA, 2000; p 123.
7. Sano, H.; Noguchi, T.; Miyajima, A. Bioorg. Med. Chem. Lett. 2006, 16, 3068.
8. D’amato, R. J.; Loughman, M. S.; Flynn, E.; Folkman, J. Proc. Natl. Acad. Sci. U.S.A.
1994, 91, 4082.
9. (a) Calbrese, L.; Fleisher, A. B. Am. J. Med. 2000, 108, 487; (b) Bartlett, J. B.;
Dredge, K.; Dalglish, A. G. Nat. Rev. Cancer 2004, 4, 314; (c) Richardson, P.;
Hideshima, T.; Anderson, K. Annu. Rev. Med. 2002, 53, 629.
10. Sampaio, E. P.; Kaplan, G.; Miranda, A.; Nery, J. A. C.; Miguel, C. P.; Viana, S. M.;
Sarno, E. N. J. Infect. Dis. 1993, 168, 408.
11. (a) Hashimoto, Y. Biol. Med. Chem. 2002, 10, 461; (b) Zhu, X.; Giordano, T.; Yu, Q.
S.; Holloway, H. W.; Perry, T. A.; Lahiri, D. K.; Brossi, A.; Greig, N. H. J. Med.
Chem. 2003, 46, 5222.
12. (a) Narasimhan, B.; Sharma, D.; Kumar, P. Med. Chem. Res. 2012, 21, 269–283;
(b) Selcen, A. A.; Sevil, Z.; Istvan, Z.; Gunes, C.; Borbala, R.; Semih, G. H.; Zeki, T.
J. Enzyme Inhib. Med. Chem. 2009, 24, 844; (c) Alper, S.; Arpaci, O. T.; Aki, E. S.;
Yalcin, I. Farmaco 2003, 58, 497; (d) Abdel-Aziz, H. A.; Tamer, S.; Saleh, T. S.; El-
Zahabi, H. A. Arch. Pharmcol. Chem. Life Sci. 2010, 343, 24; (e) Hutchinson, I.;
Bradshaw, T. D.; Matthews, C. S.; Stevens, M. F. G.; Westwell, A. D. Bioorg. Med.
Chem. Lett. 2003, 13, 471; (f) Hutchinson, I.; Jennings, S. A.; Vishnuvajjala, B. R.;
Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 2002, 45, 744.
13. Yeh, C. B.; Su, C. J.; Hwang, J. M.; Chou, M. C. Eur. J. Med. Chem. 2010, 45, 3981.
14. Kok, S. H. L.; Gambari, R.; Chui, C. H.; Yuen, M. C. W.; Lin, E.; Wong, R. S. M.; Lau,
F. Y.; Gregory Cheng, Y. M.; Lam, W. S.; Chan, S. H.; Lam, K. H.; Cheng, C. H.; Lai,
P. B. S.; Yu, M. W. Y.; Cheung, F.; Tanga, J. C. O.; Chana, A. S. C. Biol. Med. Chem.
2008, 16, 3626.
15. Majumder, S.; Rajaram, M.; Muley, A.; Reddy, H. S.; Tamilarasan, K. P.; Kolluru,
G. K.; Sinha, S.; Siamwala, J. H.; Gupta, R.; Ilavarasan, R.; Venkataraman, S.;
Sivakumar, K. C.; Anishetty, S.; Kumar, P. G.; Chatterjee, S. Br. J. Pharmacol.
2009, 158, 1720.
16. Knobloch, J.; Shaughnessy, J. D.; Ruther, U. FASEB J. 2007, 21, 1410–1421.
17. Tamilarasan, K. P.; Kolluru, G. K.; Rajaram, M.; Indhumathy, M.; Saranya, R.;
Chatterjee, S. BMC Cell Biol. 2006, 7, 17.
In conclusion, benzimidazole, benzothiazole and benzothiadiaz-
ole containing phthalimide derivatives have been discovered as po-
tent inhibitors of angiogenesis in ex vivo egg yolk angiogenesis.
Further structural development studies based on the present com-
pounds may yield potent and non-teratogenic derivatives for anti-
cancer therapy.
Acknowledgments
Authors are grateful to the Director, CSIR-IHBT, Palampur for
providing necessary facilities during the course of the work.
Thanks are also due to CSIR for awarding Senior Research Fellow-
ship to U.S.
18. Moreira, A. L.; Friedlander, D. P.; Shif, B.; Kaplan, G.; Zagzag, D. J. Neurooncol.
1999, 43, 109.
19. Sharma, U.; Kumar, P.; Kumar, N.; Singh, B. Mini Rev. Med. Chem. 2010, 10, 678.
20. Dredge, K.; Horsfall, R.; Robinson, S. P.; Zhang, L. H.; Lu, L.; Tang, Y.; Shirley, M.
A.; Muller, G.; Schafer, P.; Stirling, D.; Dalgleish, A. G.; Bartlett, J. B. Microvasc.
Res. 2005, 69, 56.
Supplementary data
Supplementary data associated with this article can be found, in