152
C.-M. Abuhaie et al. / Bioorg. Med. Chem. Lett. 23 (2013) 147–152
K.; Hamel, E.; Pettit, R. K.; Chapuis, J. C.; Schmidt, T. M. J. Med. Chem. 2002, 45,
In conclusion, a new class of microtubule-targeting agents bear-
2534; (h) Liou, J. P.; Chang, Y. L.; Kuo, F. M.; Chang, C. W.; Tseng, H. Y.; Wang, C.
C.; Yang, Y. N.; Chang, J. Y.; Lee, S. J.; Hsieh, H. P. J. Med. Chem. 2004, 47, 4247; (i)
Ghinet, A.; Rigo, B.; Hénichart, J.-P.; Le Broc-Ryckewaert, D.; Pommery, J.;
Pommery, N.; Thuru, X.; Quesnel, B.; Gautret, P. Bioorg. Med. Chem. Lett. 2011,
19, 6042.
ing a phenothiazine core was synthesized. In these series, the
replacement of the classical B-ring by various substituents (e.g.,
compounds 22, 23, 25–28, 42 or 43) was also realized. The biolog-
ical results obtained are important for further structure-activity
relationships in these series since there are no reports disclosing
similar modifications to the B-ring in the phenstatin series.
These new derivatives showed significant activities against cel-
lular proliferation and tubulin polymerization, rather similar to
those of phenstatin (2).
Phenothiazine derivative 21 proved to be the most potent com-
pound synthesized with GI50 values ranging from 29 to 93 nM on
different cell lines. The same compound showed a better inhibition
of COLO 205, A498, and MCF7 cell lines than the parent phenstatin
(2). Moreover, compound 21 showed increased inhibitory potential
on K-562 (leukemia cell line) compared to the best phenothiazine
derivative issued from a precedent study (e.g., GI50 = 40.0 nM (Ta-
ble 2) versus 210 nM16). Further investigation on the metabolic
profile of the best candidates issued from this study will be real-
ized in due course.
10. Alvarez, C.; Alvarez, R.; Corchete, P.; Perez-Melero, C.; Pelaez, R.; Medarde, M.
Eur. J. Med. Chem. 2010, 45, 588.
11. Beale, T. M.; Myers, R. M.; Shearman, J. W.; Charnock-Jones, D. S.; Brenton, J. D.;
Gergely, F. V.; Ley, S. V. Med. Chem. Commun. 2010, 1, 202.
12. Titov, I. Y.; Sagamanova, I. K.; Gritsenko, R. T.; Karmanova, I. B.; Atamanenko, O.
P.; Semenova, M. N.; Semenov, V. V. Bioorg. Med. Chem. Lett. 2011, 21, 1578.
13. Gaukroger, K.; Hadfield, J. A.; Lawrence, N. J.; Nolan, S.; McGown, A. T. Org.
Biomol. Chem. 2003, 3033.
14. (a) Marrelli, M.; Conforti, F.; Statti, G. A.; Cachet, X.; Michel, S.; Tillequin, F.;
Menichini, F. Curr. Med. Chem. 2011, 18, 3035; (b) Nguyen, T. L.; McGrath, C.;
Hermone, A. R.; Burnett, J. C.; Zaharevitz, D. W.; Day, B. W.; Wipf, P.; Hamel, E.;
Gussio, R. J. Med. Chem. 2005, 48, 6107.
15. Medarde, M.; Ramos, A.; Caballeros, E.; Pelaez-Lamamié de Clairac, R.; Lopez, J.
L.; Gravalos, D. G.; San Feliciano, A. Eur. J. Med. Chem. 1998, 33, 71.
16. Prinz, H.; Chamasmani, B.; Vogel, K.; Böhm, K. J.; Aicher, B.; Gerlach, M.;
Günther, E. G.; Amon, P.; Ivanov, I.; Müller, K. J. Med. Chem. 2011, 54, 4247.
17. (a) Belei, D.; Dumea, C.; Samson, A.; Farce, A.; Dubois, J.; Bîcu, E.; Ghinet, A.
Bioorg. Med. Chem. Lett. 2012, 22, 4517; (b) Baciu-Atudosie, L.; Ghinet, A.; Belei,
D.; Gautret, P.; Rigo, B.; Bîcu, E. Tetrahedron Lett. 2012, 53, 6127; (c) Baciu-
Atudosie, L.; Ghinet, A.; Farce, A.; Dubois, J.; Belei, D.; Bîcu, E. Bioorg. Med. Chem.
Lett. 2012, 22, 6896; (d) Abuhaie, C.-M.; Ghinet, A.; Farce, A.; Dubois, J.; Gautret,
Heterocycl. Chem. 2011, 48, 129; (f) Bacu, E.; Samson-Belei, D.; Nowogrocki, G.;
Couture, A.; Grandclaudon, P. Org. Biomol. Chem. 2003, 1, 2377; (g) Bacu, E.;
Couture, A.; Grandclaudon, P. Synth. Commun. 2003, 33, 143; (h) Bacu, E.;
Chitanu, G. C.; Couture, A.; Grandclaudon, P.; Singurel, G.; Carpov, A. Eur. Polym.
J. 2002, 38, 1509; (i) Bacu, E.; Petrovanu, M.; Couture, A.; Grandclaudon, P.
Phosphorus Sulfur Silicon Relat. Elem. 1999, 149, 207.
Acknowledgments
The authors gratefully acknowledge the CommScie (project
POSDRU/89/1.5/S/63663) for financial support, the ‘Programul
Operational Sectorial Dezvoltarea Resurselor Umane 2007–2013’
(project POSDRU/88/1.5/S/47646) for C.-M. A.’s scholarship, and
the NCI (National Cancer Institute) for the biological evaluation
of synthesized compounds on their 60-cell panel.
18. Hamze, A.; Rasolofonjatovo, E.; Provot, O.; Mousset, C.; Veau, D.; Rodrigo, J.;
Bignon, J.; Liu, J.-M.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.; Brion, J.-D.;
Alami, M. ChemMedChem 2011, 6, 1.
19. Clayton, J.; Clayden, J. Tetrahedron Lett. 2011, 52, 2436.
20. Tung, Y.-S.; Coumar, M. S.; Wu, Y.-S.; Shiao, H.-Y.; Chang, J.-Y.; Liou, J.-P.;
Shukla, P.; Chang, C.-W.; Chang, C.-Y.; Kuo, C.-C.; Yeh, T.-K.; Lin, C.-Y.; Wu, J.-S.;
Wu, S.-Y.; Liao, C.-C.; Hsieh, H.-P. J. Med. Chem. 2011, 54, 3076.
Supplementary data
21. Georgescu, F.; Georgescu, E.; Draghici, C.; Iuhas, P. C.; Filip, P. I. Rev. Roum.
Chim. 2005, 50, 349.
Supplementary data (Synthesis details, physico–chemical char-
acterization for all new compounds and data obtained from the
NCI’s in vitro disease-oriented human tumor cell screen at 10 lM
concentration for compounds 26, 28, 38, and 42 (Table 3) are avail-
able in the ‘supplementary data’ section) associated with this arti-
22. Beemelmanns, C.; Lentz, D.; Reissig, H.-U. Chem. Eur. J. 2011, 17, 9720.
23. Tubulin studies: sheep brain tubulin was purified according to the method of
Shelanski (Shelanski, M. L.; Gaskin, F.; Cantor, C. R. Proc. Natl. Acad. Sci. U.S.A.,
1970, 70, 765) by two cycles of assembly buffer containing 0.1 M MES, 0.5 mM
MgCl2, 1 mM EGTA, and 1 mM of GTP, pH 6.6 (the concentration of tubulin was
about 2-3 mg/mL). Tubulin assembly was monitored by fluorescence according
to reported procedure (Barron, D. M.; Chatterjee, S. K.; Ravindra, R.; Roof, R.;
Baloglu, E.; Kingston, D. G. I.; Bane, S. Anal. Biochem. 2003, 315, 49) using DAPI
as fluorescent molecule. Assays were realized on 96-well plates prepared with
Biomek NKMC and Biomek 3000 from Beckman coulter and read at 37 °C on
Wallac Victor fluorimeter from Perkin-Elmer. The IC50 value of each compound
was determined as tubulin by 50% compared to the rate in the absence of
compound. The IC50 values for all compounds were compared to the IC50 of
phenstatin and desoxypodophyllotoxin and measured the same day under the
same conditions.
References and notes
1. (a) Hyams, J.; Lloyd, C. W. Microtubules; Wiley Ed.: New York, 1994; (b) Fojo, T.
The Role of Microtubules in Cell Biology, Neurobiology, and Oncology; Humana
Press Ed.: Totowa, NJ, 2008.
2. Dumontet, C.; Jordan, M. Nat. Rev. Drug Disc. 2010, 9, 790.
24. Cell proliferation assay: the synthesized compounds were tested against a panel
of 60 human cancer cell lines at the National Cancer Institute, Bethesda, MD.
The cytotoxicity studies were conducted using a 48 h exposure protocol using
the sulforhodamine B assay (a) Boyd, R. B. The NCI in vitro Anticancer Drug
Discovery Screen. In Anticancer Drug Development Guide Preclinical Screening
Clinical Trials and Approval; Teicher, B., Ed.; Humana Press Inc.: Totowa, NJ,
1997; pp 23–42; (b) Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon,
J.; Vistica, D.; Warren, J. T.; Bokesh, H.; Kennedy, S.; Boyd, M. R. J. Natl. Cancer
Inst. 1990, 82, 1107.
3. Carlson, R. O. Expert Opin. Invest. Drugs 2008, 17, 707.
4. Jordan, M. A.; Wilson, L. Nat. Rev. Cancer 2004, 4, 253.
5. Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garciakendall, D.
Experientia 1989, 45, 209.
6. Li, Q.; Sham, H. L.; Rosenberg, S. H. Annu. Rep. Med. Chem. 1999, 34, 139.
7. Pettit, G. R.; Toki, B.; Herald, D. L.; Verdier-Pinard, P.; Boyd, M. R.; Hamel, E.;
Pettit, R. K. J. Med. Chem. 1998, 41, 1688.
8. (a) Alvarez, R.; Alvarez, C.; Mollinedo, F.; Sierra, B. G.; Menarde, M.; Pelaez, R.
Bioorg. Med. Chem. Lett. 2009, 17, 6422; (b) Messaoudi, S. J. Med. Chem. 2009, 52,
4538; (c) Hamze, A.; Giraud, A.; Messaoudi, S.; Provot, O.; Peyrat, J. F.; Bignon,
J.; Liu, J. M.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.; Brion, J. D.; Alami, M.
ChemMedChem 1912, 2009, 4.
25. Barbosa, E. G.; Bega, L. A. S.; Beatriz, A.; Sarkar, T.; Hamel, E.; Do Amaral, M. S.;
de Lima, D. P. Eur. J. Med. Chem. 2009, 44, 2685.
26. Molecular modeling: the crystallographic structure of a heterodimer of
a and b-
tubulin was taken from the 1sa043 entry of the RCSB Protein Data Bank
(Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;
Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res., 2000, 28, 235) and the binding
site was thought to be that of the co-crystallised thiocolchicine. Flexible
docking of the compounds into their putative binding site was performed using
GOLD 5.1 software (Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J.
Mol. Biol. 1997, 267, 717748). The most stable docking models were selected
according to the best scored conformation predicted by the GoldScore and X-
Score scoring functions (Wang, R.; Lai, L.; Wang, S. J. Comput. Aided Mol. Des.
9. (a) Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A. J. Med.
Chem. 2006, 49, 3033; (b) Ty, N.; Kaffy, J.; Arrault, A.; Thoret, S.; Pontikis, R.;
Dubois, J.; Morin-Allory, L.; Florent, J. C. Bioorg. Med. Chem. Lett. 2009, 19, 1318;
(c) Pettit, G. R.; Toki, B. E.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K.;
Chapuis, J. C. J. Med. Chem. 1999, 42, 1459; (d) Alvarez, C.; Alvarez, R.; Corchete,
P.; Perez-Melero, C.; Pelaez, R.; Medarde, M. Bioorg. Med. Chem. Lett. 2007, 17,
3417; (e) Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.; Lopez Cara, C.; Preti, D.;
Fruttarolo, F.; Pavani, M. G.; Tabrizi, M. A.; Tolomeo, M.; Grimaudo, S.; Di
Antonella, C.; Balzarini, J.; Hadfield, J. A.; Brancale, A.; Hamel, E. J. Med. Chem.
2007, 50, 2273; (f) Hu, L.; Jiang, J.-D.; Qu, J.; Li, Y.; Jin, J.; Li, Z.-R.; Boykin, D. W.
Bioorg. Med. Chem. Lett. 2007, 17, 3613; (g) Pettit, G. R.; Grealish, M. P.; Jung, M.
2002, 1, 11) and
a visual assessment of the consistency of the docking
solutions, expressed as the closeness of the thirty generated conformations.