Journal of the American Chemical Society
development of further reagents for amide formation. The
Page 8 of 9
REFERENCES
1
2
3
4
5
6
7
8
developed transition state models also accurately predict the
products of the kinetic resolution reaction, suggesting that this
model can be used for the logical de novo design of new catalysts
for this substrate as well as for substrates that do not perform well
using the current system.
1) Walsh, P. W.; Kozlowski, M. C. Fundamentals of Asymmetric
Catalysis; University Science Books: Sausalito, CA, 2009.
2) (a) Müller, C. E.; Schreiner, P. R. Angew. Chem. Int. Ed. 2011, 50,
6012. (b) Wende, R. C.; Schreiner, P. R. Green Chem. 2012, 14, 1821. (c)
Krasnov, V. P.; Gruzdev, D. A.; Levit, G. L. Eur. J. Org. Chem. 2012, 1471.
3) Larionov, E.; Mahesh, M.; Spivey, A. C.; Wei, Y.; Zipse, H. J. Am.
Chem. Soc. 2012, 134, 9390.
4) Li, X.; Liu, P.; Houk, K. N.; Birman, V. B. J. Am. Chem. Soc. 2008,
130, 13836.
Experimental Section
9
5) Shinisha, C. B.; Sunoj, R. B. Org. Lett. 22009, 11, 3242.
6) Sanan, T.; RajanBabu, T. V.; Hadad, C. M. J. Org. Chem. 2010, 75,
2369.
7) Yang, X.; Bumbu, V. D.; Liu, P.; Li, X.; Jiang, H.; Uffman, E. W.; Guo,
L.; Zhang, W.; Jiang, X.; Houk, K. N.; Birman, V. B. J. Am. Chem. Soc.
2012, 134, 17605.
8) (a) Binanzer, M.; Hsieh, S.-Y.; Bode, J. W. J. Am. Chem. Soc. 2011,
133, 19698. (b) Hsieh, S.-Y.; Binanzer, M.; Kreituss, I.; Bode, J. W. Chem.
Commun. 2012, 48, 8892–8894. (c) Kreituss, I.; Murakami, Y.; Binanzer,
M.; Bode, J. W. Angew. Chem. Int. Ed. 2012, 51, 10660.
9) For a subsequent report of an enzymetic resolution of N-heterocycles,
see: Ghisleri, D.; Green, A. P.; Pontini, M.; Willies, S. C.; Rowles, I.; Frank,
A.; Gorgan, G.; Turner, N. J. J. Am. Chem. Soc. 2013, 135, 10863.
10) The reaction halts at 50% conversion with the use of 0.5 equiv
hydroxamic ester .
11) Sorrell, T. N. Organic Chemistry, 2nd Ed.; University Science
Books: Sausolito, CA, 2006.
12) (a) Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006,
426, 280. (b) Singleton, D. A.; Merrigan, S. R. J. Am. Chem. Soc. 2000,
122, 11035.
13) Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7018.
14) Liu, X.-Q.; Jin, L.; Kim, C. K.; Xue, Y. J. Mol. Catal. A.: Chem. 2012,
355, 102.
Calculation Methods. To identify the different reaction
mechanisms, a conformational search was conducted for each
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
38
transition state using the OPLS_2005 force field as employed in
39
MacroModel. The lowest energy conformation was optimized at
40,41
B3LYP/6-31G(d,p),
followed by single point calculations with
implicit solvation (dichloromethane, ε = 8.93)32 at IEFPCM-M06-
42 43
,
44
2X/6-311+G(d,p)
using Gaussian09. All DFT calculations
employed an ultrafine integration grid (99 radial shells, 590 angular
points) and tight optimization parameters. Frequency calculations
confirmed the identity of geometry minima (no imaginary
frequencies) and transition states (one imaginary frequency).
Intrinsic reaction coordinate (IRC) calculations were performed to
45
confirm the identity of identified transition states. Local minima
were found by nudging transition states along the reaction
coordinate followed by geometry optimization and single point
calculation at the levels described above. Gibbs free energies are
given relative to starting materials at infinite distance; pre-reaction
complexes were not considered. Zero-point enegies and thermal
corrections were calculated at 298 K and are unscaled.
Transition state conformations to calculate selectivity factors
were identified via systematic examination of variables rather than a
Monte Carlo conformational search. All transition states were
confirmed to have one imaginary frequency. Gas phase transition
state geometry optimization was performed using B3LYP/6-
31G(d,p) followed by solvated single point energy calculations
using M06-2X/6-311+G(d,p) and the IEFPCM solvation model
(dichloromethane, ε = 8.93).
15) Hedstrom, L. Chem. Rev. 2002, 102, 4501.
16) Oie, T.; Loew, G. H.; Burt, S. K.; Binkley, J. S.; MacElroy, R. D. J. Am.
Chem. Soc. 1982, 104, 6169.
17) Antonczak, S.; Ruiz-Lopez, M. F.; Rivail, J. L. J. Am. Chem. Soc.
1994, 116, 3912.
18) (a) Yang, W.; Drueckhammer, D. G. Org. Lett. 2000, 2, 4133. (b)
Yang, W.; Drueckhammer, D. G. J. Am. Chem. Soc. 2001, 123, 11004.
19) Wang, L.-h.; Zipse, H. Liebigs Ann. Chem. 1996, 1501.
20) Gandour, R. D. Tetrahedron Lett. 11974, 15, 295.
21) Duan, X.; Schreiner, S. J. Am. Chem. Soc. 11992, 114, 5849.
22) (a) Rangelov, M. A.; Petrova, G. P.; Yomtova, V. M.; Vayssilov, G. N.
J. Org. Chem. 2010, 75, 6782. (b) Rangelov, M. A.; Petrova, G. P.;
Yomtova, V. M.; Vayssilov, G. N. J. Mol. Graphics Modell. 2010, 29, 246.
23) Rangelov, M. A.; Vayssilov, G. N.; Yomtova, V. M.; D., P. D. Org.
Biomol. Chem. 2005, 3, 737.
24) Bunnett, J. F.; Davis, G. T. J. Am. Chem. Soc. 1960, 82, 665.
25) (a) Ilieva, S.; Galabov, B.; Musaev, D. G.; Morokuma, K.; Schaefer, H.
F. I. J. Org. Chem. 22003, 68, 1496. (b Ilieva, S.; Atanasov, Y.; Kalcheva, V.;
Galabov, B. J. Mol. Struct.: THEOCHEM 2003, 633, 49. (c) Galabov, B.;
Atanasov, Y.; Ilieva, S.; Schaefer, H. F. I. J. Phys. Chem. A 2005, 109,
11470. (d) Galabov, B.; Ilieva, S.; Hadjieva, B.; Atanasov, Y.; Schaefer, H.
F. I. J. Phys. Chem. A 2008, 112, 6700.
26) Díaz, N.; Suárez, D.; Sordo, T. L.; Méndez, R.; Villacorta, J. M. Eur. J.
Org. Chem. 22003, 4161.
27) Xia, X.; Zhang, C.; Xue, Y.; Kim, C. K.; Yan, G. J. Chem. Theory
Comput. 2008, 4, 1643.
28) (a) Rony, P. R. J. Am. Chem. Soc. 11969, 91, 6090. (b) Fischer, C. B.;
Steininger, H.; Stephenson, D. S.; Zipse, H. J. Phys. Org. Chem. 2005, 18,
901.
ASSOCIATED CONTENT
Supporting Information. Full computational and experimental
details. This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Authors
marisa@sas.upenn.edu, bode@org.chem.ethz.ch
ACKNOWLEDGMENT
We thank Michael Binanzer (ETH-Zürich) for preliminary kinetic
studies. We are grateful to the National Institutes of Health (GM-
079339 and GM-087605), the National Science Foundation (CHE-
0449587), and the (ERC Starting Grant No. 306793 – CASAA) for
financial support of this research. Computational support was
provided by XSEDE on SDSC Gordon (TG-CHE120052) and PSC
Blacklight (TG-CHE110080). Additional computational support was
provided by the NSF CRIF program, grant CHE-013112, and the ETH
High-Performance Cluster, Brutus.
29) Petrova, T.; Okovytyy, S.; Gorb, L.; Leszczynski, J. J. Phys. Chem. A
2008, 112, 5224.
8
ACS Paragon Plus Environment