The 1,4,5-Triaminotetrazolium Cation: A Highly Nitrogen-Rich Moiety
bromide(0.15 g, 88%). DSC: 102 °C (dec.). IR: ν = 3350 (w), 3210 (ARDEC), W011NF-09-1-0056 (ARDEC), and 10 WPSEED01-
˜
¯
(m), 3067 (m), 1715 (s), 1685 (m), 1654 (w), 1600 (m), 1576 (w),
1560 (m), 1541 (w), 1394 (w), 1214 (m), 1192 (m), 1134 (w), 1091
(m), 1015 (m), 927 (w), 867 (s), 789 (w), 769 (w), 700 (w), 671
002/WP1765 (SERDP) is gratefully acknowledged. The authors
acknowledge collaborations with Dr. Mila Krupka (OZM Re-
search, Czech Republic) in the development of new testing and
(w) cm–1. Raman (1064 nm) = 3250 (11), 3218 (1), 3202 (1), 3180 evaluation methods for energetic materials and with Dr. Muhamed
(1), 3147 (1), 3117 (1), 1731 (2), 1599 (9), 1521 (2), 1412 (2), 1384
(25), 1319 (1), 1223 (3), 1136 (4), 1093 (12), 1010 (5), 790 (100),
636 91), 617 (20), 545 (3), 474 (3), 351 (2), 303 (22) cm–1. 1H NMR
Sucesca (Brodarski Institute, Croatia) in the development of new
computational codes to predict the detonation and propulsion pa-
rameters of novel explosives. We are indebted to and thank Drs.
(400 MHz, [D6]DMSO): δ = 8.96 (s, 2 H, C-NH2), 6.99 (s, 4 H, N- Betsy M. Rice and Brad Forch (ARL, Aberdeen, Proving Ground,
NH2) ppm. 13C NMR (68 MHz, [D6]DMSO): δ = = 147.2 (s, 1 C,
CN7H6) ppm. MS (FAB+): m/z = 116.1 [CN7H6]. MS (FAB–): m/z
= 78.9 [Br]. CN7H6Br (196.01): calcd: C 6.13, H 3.09, N 50.02;
found too sensitive for measurement. BAM impact: Ͻ1 J. BAM
friction: Ͻ5 N. ESD: 0.015 J.
MD) and Mr. Gary Chen (ARDEC, Picatinny Arsenal, NJ) for
many helpful and inspired discussions and support of our work.
The authors want to thank St. Huber for measuring the sensitivi-
ties.
[1] K. O. Christie, Propellants Explos. Pyrotech. 2007, 32, 194–204.
[2] Y.-H. Joo, J. M. Shreeve, Angew. Chem. 2009, 121, 572–575;
Angew. Chem. Int. Ed. 2009, 48, 564–567.
[3] D. E. Chavez, D. A. Parrish, Propellants Explos. Pyrotech.
2012, DOI: 10.1002/prep.201100112.
[4] O. S. Bushuyev, P. Brown, A. Maiti, R. H. Geen, G. R. Pe-
terson, B. L. Hope-Weeks, L. J. Hope-Weeks, J. Am. Chem.
Soc. 2012, 134, 1422–1425.
1,4,5-Triaminotetrazolium Nitrate (3): To a solution of triamino-
tetrazolium bromide (0.300 g, 1.53 mmol) dissolved in distilled
water (10 mL) was added a solution of silver nitrate (0.260 g,
1.53 mmol) in distilled water (10 mL). The solution was stirred in
the dark at 100 °C for 3 h. After filtration of silver bromide and
evaporation of the aqueous filtrate, triaminotetrazolium nitrate
(0.250 g, 92%) was obtained. DSC: 78 °C (dec.). IR: ν = 3325 (m),
˜
[5] M. Göbel, K. Karaghiosoff, T. M. Klapötke, D. G. Piercey, J.
Stierstorfer, J. Am. Chem. Soc. 2010, 132, 17216–17226.
[6] T. M. Klapötke, D. G. Piercey, J. Stierstorfer, Chem. Eur. J.
2011, 17, 13068–13077.
[7] Y.-C. Li, C. Qi, S.-H. Li, H.-J. Zhang, C.-H. Sun, Y.-Z. Yu, S.-
P. Pa ng , J. Am. Chem. Soc. 2010, 132, 12172–12173.
[8] T. M. Klapötke, D. G. Piercey, Inorg. Chem. 2011, 50, 2732–
2734.
3200 (m), 3088 (m), 1726 (m), 1645 (m), 1621 (m), 1374 (s), 1311
(s), 1220 (m), 1125 (w), 1086 (m) 1048 (w), 1033 (w), 1009 (w),
949 (w), 863 (w), 825 (m), 791 (w), 719 (w), 683 (w) cm–1. Raman
(1064 nm) = 3325 (1), 3214 (10), 1734 (2), 1620 (6), 1583 (2), 1521
(2), 1413 (1), 1384 (31), 1332 (1), 1231 (1), 1128 (3), 1088 (11), 1050
(100), 1009 (2), 792 (84), 722 (5), 617 (20), 543 (1), 323 (11), 291
(2) cm–1. 1H NMR (400 MHz, [D6]DMSO): δ = 8.97 (s, 2 H, C–
NH2), 7.00 (s, 4 H, N–NH2) ppm. 13C NMR (68 MHz, [D6]-
DMSO): δ = 147.2 (s, 1C, CN7H6) MS (FAB+): m/z = 116.1
[CN7H6]. MS (FAB–): m/z = 62.0 [NO3]. CN7H6NO3 (178.11):
calcd: C 6.74, H 3.40, N 62.91; found too sensitive for measure-
ment. BAM impact: 2 J. BAM friction: 5 N. ESD: 0.050 J.
[9] P. Carlqvist, H. Östmark, T. Brinck, J. Phys. Chem. A 2004,
108, 7463–7467.
[10] T. Schroer, R. Haiges, S. Schneider, K. O. Christie, Chem. Com-
mun. 2005, 1607–1609.
[11] J. Fronabarger, M. D. Williams, W. B. Sanborn, J. G. Bragg,
D. A. Parrish, M. Bichay, Propellants Explos. Pyrotech. 2011,
36, 541–550.
[12] N. Fischer, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, Z.
Anorg. Allg. Chem. 2012, 638, 302–310.
[13] T. M. Klapötke, C. M. Sabate, J. Stierstorfer, New J. Chem.
2009, 33, 136–147.
[14] N. Fischer, K. Karaghiosoff, T. M. Klapötke, J. Stierstorfer, Z.
Anorg. Allg. Chem. 2010, 636, 735–749.
[15] R. Boese, T. M. Klapötke, P. Mayer, V. Verma, Propellants Ex-
plos. Pyrotech. 2006, 31, 263–268.
[16] T. M. Klapötke, D. G. Piercey, J. Stierstorfer, Dalton Trans.
2012, 41, 9451–9459.
1,4,5-Triaminotetrazolium Nitrotetrazolate 2-Oxide (4): To a solu-
tion of triaminotetrazolium bromide (0.200 g, 1.02 mmol) dissolved
in distilled water (10 mL) was added silver nitrotetrazolate 2-oxide
(0.243 g, 1.02 mmol). The solution was stirred in the dark at 100 °C
for 3 h. After filtration of silver bromide and evaporation of the
aqueous filtrate, triaminotetrazolium nitrotetrazolate 2-oxide
(0.668 g, 67%) was obtained. DSC: 84 °C (dec.). IR: ν = 3384 (m),
˜
3338 (m), 3188 (m), 2951 (m), 1717 (m), 1636 (w), 1535 (s), 1466
(m), 1457 (m), 1419 (s), 1391 (s), 1311 (s), 1234 (m), 1185 (w), 1129
(w), 1114 (w), 1085 (w), 1051 (w), 1001 (w), 917 (w), 846 (w), 785
(s), 759 (w), 693 (w) cm–1. Raman (1064 nm): = 3382 (1), 3313 (1),
3251 (5), 1831 (1), 1599 (1), 1544 (5), 1522 (2), 1430 (100), 1407
(37), 1317 (19), 1237 (3), 1087 (77), 1059 (21), 1004 (94), 851 (1),
797 (11), 762 (2), 617 (6), 491 (4), 429 (2), 399 (1), 340 (8), 239
(7) cm–1. MS (FAB+): m/z = 116.1 [CN7H6]. MS (FAB–): m/z =
62.0 [NO3]. CN7H6CN5O3 (246.15): calcd: C 9.76, H 2.46, N 68.28;
found too sensitive for measurement. BAM impact: 1 J; BAM fric-
tion: 7 N; ESD: 0.100 J.
[17] M. H. V. Huynh, M. A. Hiskey, D. E. Chavez, R. D. Gilardi, J.
Am. Chem. Soc. 2005, 127, 12537–12543.
[18] T. M. Klapötke, J. Stierstorfer, J. Am. Chem. Soc. 2009, 131,
1122–1134.
[19] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Son-
nenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-
gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M.
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Starov-
erov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M.
Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Ad-
amo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Mar-
tin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,
J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09,
Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
[20] A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
Acknowledgments
Financial support of this work by the Ludwig-Maximilian Univer-
sity of Munich (LMU), the U.S. Army Research Laboratory
(ARL), the Armament Research, Development and Engineering
Center (ARDEC), the Strategic Environmental Research and De-
velopment Program (SERDP), and the Office of Naval Research
(ONR Global, title: “Synthesis and Characterization of New High
Energy Dense Oxidizers (HEDO) - NICOP Effort “) under
contract nos. W911NF-09-2-0018 (ARL), W911NF-09-1-0120
Eur. J. Inorg. Chem. 2012, 5694–5700
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5699