ACS Catalysis
Research Article
redox isomerization/chlorination pathway for the allylic alcohols
moieties (3) having a disubstituted double bond.
ACKNOWLEDGMENTS
■
This project was supported by the Knut and Alice Wallenberg
Foundation, the Swedish Research Council (VR) and the
Swedish Governmental Agency for Innovation Systems
(VINNOVA) through the Berzelii Center EXSELENT on
Porous Materials. B.M.-M. was supported by VINNOVA
through a VINNMER grant. A.V.-R. thanks the Wenner-Gren
Foundation for a postdoctoral grant.
The selective tandem reaction could also be achieved using
only a catalytic amount of p-TsOH, but the reactivity was
strongly influenced by the electronic properties of the α-aryl
group of the allylic alcohol, as noted above (Scheme 2, 1c-e).
Using 0.1 equiv of p-TsOH and the iridium catalyst, allylic
alcohol 1e, containing a Cl substituent at the para position of the
aromatic ring, reacted slowly (Scheme 2, 1e), and after 16 h, a
small amount of the desired α-chloroketone 3′e was observed
(13%) along with the corresponding transposed allylic alcohol
1′e in 35% yield. In contrast, when an electron-donating group
(p-OMe) was present in the aromatic ring (Scheme 2, 1d), the
corresponding α-chloroketone 3′d was obtained in quantitative
yield (99%) after 16 h using 0.1 equiv of p-TsOH. For the
substrate with an unsubstituted phenyl ring (Scheme 2, 1c), α-
chloroketone 3′c was obtained in high yield (91%) when using
catalytic amount of p-TsOH.
The versatility of this method therefore gives access to variety
of α-chlorocarbonyls in good to excellent yields. These
compounds can be transformed into functionalized molecules
through cross-coupling11 and substitution reactions.12 Very
commonly, they are used as building blocks in the synthesis of
heterocyclic compounds, which are important scaffolds in
medicinal chemistry.7b,13,14
REFERENCES
■
(1) Reviews of pericyclic and sigmatropic rearrangements: (a) Varela,
J. A.; Saa,
́
C. Chem.Eur. J. 2006, 12, 6450−6456. (b) Li, C. J. Chem.
Rev. 2005, 105, 3095−3165. (c) Lutz, R. P. Chem. Rev. 1984, 84, 205−
247. (d) Ziegler, F. E. Chem. Rev. 1988, 88, 1423−1452. (e) Enders, D.;
Knopp, M.; Schiffers, R. Tetrahedron: Asymmetry 1996, 7, 1847−1882.
(f) Ito, H.; Taguchi, T. Chem. Soc. Rev. 1999, 28, 43−50. (g) Chai, Y.;
Hong, S. P.; Lindsay, H. A.; McFarland, C.; McIntosh, M. C. Tetrahedron
2002, 58, 2905−2928. (h) Martín Castro, A. M. Chem. Rev. 2004, 104,
2939−3002. (i) Lee, E. E.; Batey, R. A. J. Am. Chem. Soc. 2005, 127,
14887−14893.
(2) Examples of methods for the 1,3-transposition of allylic alcohols:
(a) Letourneux, Y.; Lo, M. M. L.; Chaudhuri, N.; Gut, M. J. Org. Chem.
1975, 40, 516−518. (b) Chabardes, P.; Kuntz, E.; Vargnat, J.
Tetrahedron 1977, 33, 1775−1775. (c) Hosogai, T.; Fujita, Y.;
Ninagawa, Y.; Nishida, T. Chem. Lett. 1982, 11, 357−360.
(d) Matsubara, S.; Okazoe, T.; Oshima, K.; Takai, K.; Nozaki, H. Bull.
Chem. Soc. Jpn. 1985, 58, 844−849. (e) Narasaka, K.; Kusama, H.;
Hayashi, Y. Tetrahedron 1992, 48, 2059−2068. (f) Bellemin-Laponnaz,
S.; Gisie, H.; Le Ny, J. P.; Osborn, J. A. Angew. Chem., Int. Ed. 1997, 36,
976−978. (g) Jacob, J.; Espenson, J. H.; Jensen, J. H.; Gordon, M. S.
Organometallics 1998, 17, 1835−1840. (h) Morrill, C.; Grubbs, R. H. J.
Am. Chem. Soc. 2005, 127, 2842−2843. (i) Hansen, E. C.; Lee, D. J. Am.
Chem. Soc. 2006, 128, 8142−8143. (j) Herrmann, A.; Saito, T.; Stivala,
C.-E.; Tom, J.; Zakarian, A. J. Am. Chem. Soc. 2010, 132, 5962−5963.
(k) Zheng, H.; Lejkowski, M.; Hall, G. H. Chem. Sci. 2011, 2, 1305−
1310. (l) McCubbin, J. A.; Voth, S.; Krokhin, O. V. J. Org. Chem. 2011,
76, 8537−8542. (m) Volchkov, I.; Park, S.; Lee, D. Org. Lett. 2011, 12,
3530−3533. (n) Li, P.-F.; Wang, H.-L.; Qu, J. J. Org. Chem. 2014, 79,
3955−3962. For recent reviews, see: (o) Bellemin-Laponnaz, S.; Le Ny,
J. P. C. R. Chimie 2002, 5, 217−224. (p) Volchkov, I.; Lee, D. Chem. Soc.
Rev. 2014, 43, 4381−4394.
CONCLUSIONS
■
A mild and efficient methodology based on a tandem 1,3-
transposition/3,1-hydrogen shift/chlorination of α-aryl secon-
dary allylic alcohols to synthesize a wide range of α-
chloroketones has been reported. The reactions are run under
an atmosphere of air, using low loadings of iridium(III), at room
temperature, and in a THF/H2O mixture (1:1). α-Chloroke-
tones with different aryl substituents have been isolated in high
yields as single constitutional isomers without any evidence of
the formation of saturated ketones derived either from redox
isomerization of the starting allylic alcohols or from a 1,3-
transposition/redox isomerization process without chlorination.
Although the general procedure requires a stoichiometric
amount of inexpensive and readily available p-TsOH, catalytic
amounts of this acid are able to promote the selective
transformation for several substrates. Diverse electron-donating
and electron-withdrawing groups as well as reactive function-
alities have been shown to be compatible with the reaction
conditions. This simple and practical method appears to be an
attractive and powerful way to synthesize a very important and
common type of synthetic intermediates widely used in organic
synthesis.
(3) Recent applications of allylic transpositions to the synthesis of
complex natural products: (a) Xie, Y.; Floreancig, P. E. Chem. Sci. 2011,
2, 2423−2427. (b) Xie, Y.; Floreancig, P. E. Angew. Chem., Int. Ed. 2013,
52, 625−628. (c) Xie, Y.; Floreancig, P. E. Angew. Chem., Int. Ed. 2014,
53, 4926−4929. Some applications of molecular rearrangement in the
construction of complex molecules: (d) Ilardi, E. A.; Stivala, C. E.;
Zakarian, A. Chem. Soc. Rev. 2009, 38, 3133−3148. (e) Overman, L. E.
Tetrahedron 2009, 65, 6432−6446.
(4) Selected reviews on the scope and mechanism of the isomerization
of allylic alcohols: (a) Van der Drift, R. C.; Bouwman, E.; Drent, E. J.
Organomet. Chem. 2002, 650, 1−24. (b) Cadierno, V.; Crochet, P.;
Gimeno, J. Synlett 2008, 8, 1105−1124. (c) Mantilli, L.; Mazet, C. Chem.
Lett. 2011, 40, 341−344. (d) Lorenzo-Luis, P.; Romerosa, A.; Serrano-
Ruiz, M. ACS Catal. 2012, 2, 1079−1086. (e) Ahlsten, N.; Bartoszewicz,
A.; Martín-Matute, B. Dalton Trans. 2012, 41, 1660−1670.
ASSOCIATED CONTENT
■
S
* Supporting Information
The following file is available free of charge on the ACS
(5) (a) Cadierno, V.; García-Garrido, S. E.; Gimeno, J. Chem. Commun.
2004, 2, 232−233. (b) Csabai, P.; Joo,
5640−5643. (c) Fekete, M.; Joo, F. Catal. Commun. 2006, 7, 783−786.
(d) Crochet, P.; Díez, J.; Fernandez-Zumel, M. A.; Gimeno, J. Adv.
́
F. Organometallics 2004, 23,
́
Experimental details, characterization data, and NMR
spectra of organic compounds (PDF)
́
́
Synth. Catal. 2006, 348, 93−100. (e) Cadierno, V.; García-Garrido, S. E.;
́
Gimeno, J.; Varela-Alvarez, A.; Sordo, J. A. J. Am. Chem. Soc. 2006, 128,
AUTHOR INFORMATION
1360−1370. (f) Cadierno, V.; Francos, J.; Gimeno, J.; Nebra, N. Chem.
■
Commun. 2007, 24, 2536−2538. (g) Campos-Malpartida, T.; Fekete,
Corresponding Author
́ ́ ́
M.; Joo, F.; Katho, A.; Romerosa, A.; Saoud, M.; Wojtkow, W. J.
Organomet. Chem. 2008, 693, 468−474. (h) Gonzal
́
ez, B.; Lorenzo-Luis,
́
̋
Notes
P.; Serrano-Ruiz, M.; Papp, E.; Fekete, M.; Csep
́
ke, K.; Osz, K.; Katho,
́
́
The authors declare no competing financial interest.
A.; Joo,
́
F.; Romerosa, A. J. Mol. Catal. A: Chem. 2010, 326, 15−20.
713
ACS Catal. 2015, 5, 708−714