4
Tetrahedron
2009, 4, 1036−1048. (c) Kruger, K.; Tillack, A.; Beller, M.
Adv. Synth. Catal. 2008, 350, 2153−2167.
3.
(a) Jennings, L. D.; Foreman, K. W.; Rush, T. S., III;
Tsao, D. H. H.; Mosyak, L.; Kincaid, S. L.; Sukhdeo, M.
N.; Sutherland, A. G.; Ding, W.; Kenny, C. H.; Sabus, C.
L.; Liu, H.; Dushin, E. G.; Moghazeh, S. L.; Labthavikul,
P.; Petersen, P. J.; Tuckman, M.; Ruzin, A. V. Bioorg.
Med. Chem. 2004, 12, 5115− 5131. (b) Matter, H.;
Defossa, E.; Heinelt, U.; Blohm, P. M.; Schneider, D.;
Muller, A.; Herok, S.; Schreuder, H.; Liesum, A.;
Brachvogel, V.; Lonze, P.; Walser, A.; Al-Obeidi, F.;
Wildgoose, P. J. Med. Chem. 2002, 45, 2749−2769. (c)
Tarzia, G.; Diamantini, G.; Giacomo, B. D.; Spadoni, G. J.
Med. Chem. 1997, 40, 2003−2010.
In case of pyrroles initially, the phenyl acetylene was α-
iodination followed by Kornblum oxidize to (E), which could
further imine formation to F. Then,
F
underwent
cyclization/dehydration to form H. Which further
aromatisation to 5 (Scheme 6).
Scheme 6: A possible mechanism for the formation of 5.
4.
5.
Roll, D. M.; Ireland, C. M.; Lu, H. S.; Clardy, J. J. Org.
Chem. 1988, 53, 3276–3278.
(a) Segraves, N. L.; Lopez, S.; Johnson, T. A.; Said, S. A.;
Fu, X.; Schmitz, F. J.; Pietraszkiewicz, H.; Valeriotec, F.
A.; Crewsa, P. Tetrahedron Lett. 2003, 44, 3471e3475; (b)
Schmidt, E. W.; Faulkner, D. J. Tetrahedron Lett. 1996,
37, 3951e3954; (c) Kirsch, G.; Konig, G. M.; Wright, A.
D.; Kaminsky, R. J. Nat. Prod. 2000, 63, 825e829.
(a) Charan, R. D.; McKee, T. C.; Gustafson, K. R.;
Pannell, L. K.; Boyd, M. R. Tetrahedron Lett. 2002, 43,
5201e5204; (b) Popov, A. M.; Stonik, V. A. Antibiot.
Khimioter. 1991, 36, 12e14; (c) Hormann, A.; Chaudhuri,
B.; Fretz, H. Bioorg. Med. Chem. 2001, 9, 917e921 11.
(a) Novak, P.; Muller, K.; Santhanam, S. V.; Hass, O.
Chem. Rev., 1997, 97, 207. (b) Gabriel, S.; Cecius, M.;
Fleury-Frenette, K.; Cossement, D.; Hecq, M.; Ruth, N.;
Jerome R.; Jerome, C. Chem. Mater., 2007, 19, 2364.
(a) Sundburg, R. J. in Comprehensive Heterocyclic
Chemistry II; Katritzky, A. R.; Rees C. W.; Scriven, E. F.
V. ed.; Pergamon Press: Oxford, 1996, 2, 119. (b) Fan, H.;
Peng, J.; Hamann M. T.; Hu, J. F. Chem. Rev., 2008, 108,
264.
In conclusion, an efficient and simple procedure to
the synthesis of di substituted indoles and tri substituted
pyrroles is reported. The mild reaction conditions, operational
simplicity, higher yields (65–80%), short reaction time, cheap
starting materials and environmental friendliness are notable
features of this procedure. With no doubt, this reaction should
be useful to invent a simple oxidative cyclization reaction for
the synthesis of indole and pyrrole derivatives.
6.
7.
8.
Supplementary data
1
Experimental details, characterization data, copies of H and 13C
NMR spectrum of products can be found, in the online version, at
9.
(a) Zeng, L.; Miller, E. W.; Pralle, A.; Isacoff E. Y.;
Chang, C. J. J. Am. Chem. Soc., 2006, 128, 10. (b) La
Regina, G.; Silvestri, R.; Artico, M.; Lavecchia, A.;
Novellino, E.; Befani, O.; Turini. P.; Agostinelli, E. J.
Med. Chem., 2007, 50, 922.
References and notes
1.
Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem.
Rev. 2010, 110, 4489−4497. (b) Somei, M.; Yamada, F.
Nat. Prod. Rep. 2004, 21, 278−311. (c) Indoles; Sundberg,
R. J., Ed.; Academic Press: London, 1996.
10. (a) Wenkert, E.; Moeller, P. D. R.; Piettre, S. R.; McPhail,
A. T. J. Org. Chem. 1988, 53, 3170. (b) Ketcha, D. M.;
Gribble, G. W. J. Org. Chem. 1985, 50, 5451. (c) Okauchi,
T.; Itonaga, M.; Minami, T.; Owa, T.; Kitoh, K.; Yoshino,
H. Org. Lett. 2000, 2, 1485. (d) Ottoni, O.; Neder, A.; de,
V. F.; Dias, A. K. B.; Cruz, R. P. A.; Aquino, L. B. Org.
2.
selected For reviews on indole synthesis, see: (a) Taber, D.
F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195−7210. (b)
Barluenga, J.; Rodriguez, F.; Fananas, F. J. Chem. Asian J.