Journal of the American Chemical Society
rial is available free of charge via the Internet at
Page 4 of 5
tioselective iodocyclization of 11g proceeded via species
14, which was more electrophilic than 13.25
1
2
Halogenated chiral chromans and halopyrrolidines are
useful building blocks and synthetic intermediates
(Scheme 2). Compound 8h-I could be transformed to
Daedalin A 3 through a 3-step process. Key intermedi-
ates in the synthesis of Vitamin E (126 and 227) and
Englitazone 428 could be obtained from 8k-I and 8j-I.
In addition, a bicyclic adduct 15 was obtained from 8a-I
through DDQ oxidation. In particular, 12f-I underwent
radical cyclization to give a tricyclic adduct 16 with high
diastereoselectivity. Although further improvement of
the enantioselectivity is needed, we believe that this
method is an efficient alternative approach for obtaining
polycyclic compounds. Finally, halopyrrolidine 8n-I
could be transformed to chiral aziridine 17 through a
known method.10b
AUTHOR INFORMATION
Corresponding Author
3
4
5
6
7
8
9
Author Contributions
†Y.L. and H.N. contributed equally.
‡The current affiliation of H.N. is Kwansei Gakuin Univer-
sity.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
This work was financially supported by JSPS KAKENHI
Grant Numbers JP15H05755 and JP15H05810 for Precise-
ly Designed Catalysts with Customized Scaffolding, and
the Program for Leading Graduate Schools: IGER Program
in Green Natural Sciences (MEXT). We thank Mr. Katsu-
ya Yamakawa for experimental assistance.
Scheme 2. Synthetic Transformation of Optically
Active Halocyclic Products
MeO
HO
1. CsOAc (97%)
2. DDQ (99%)
REFERENCES
Isolated yield
is shown
in parentheses.
O
O
1. Shen, H. C. Tetrahedron 2009, 65, 3931 and references therein.
2. Farrell, P. M.; In Vitamin E. A Comprehensive Treatise, ed. L. J.
Machlin. Marcel Dekker, New York, 1980.
3. (a) Chen, Z. -Y.; Ma, K. Y.; Liang, Y.; Peng, C.; Zuo, Y. J. Funct.
Foods 2011, 3, 61. (b) Aggarwal, B. B.; Sundaram, C.; Prasad, S.;
Kannappan, R. Biochem. Pharmacol. 2010, 80, 1613.
4. Sekimoto, M.; Hattori, Y.; Morimura, K.; Hirota, M.; Makabe, H.
Biol. Med. Chem. Lett. 2010, 20, 1063.
5. Valsamakis, G.; Kumar, S. Exp. Opin, Pharmacother. 2000, 1,
1413 and references therein.
3. NaH/EtSH (65%)
1. CsOAc
/LiOH
I
3
OH
8h-I
1. CsOAc
/LiOH
(98%)
HO
BnO
HO
(98%)
2. ref. 26
2. Tf2O
(92%)
3. ref. 27
O
O
O
R
I
R
1
8k-I
2
1. CsOAc
/LiOH
(90%)
1. CsOAc
/LiOH
(98%)
R
O
6. De Cree, J.; Geukens, H.; Leempoels, J.; Verhaegen, H. Drug Dev.
Res. 1986, 8, 109. (b) Van de Water, A.; Janssen, W.; Van Nueten,
J.; Xhonneux, R.; De Cree, J.; Verhaegen, H.; Reneman, R. S.;
Janssen, P. A. J. J. Cardiovasc. Pharmacol. 1988, 11, 552.
7. Weyant, M. J.; Carothers, A. M.; Dannenberg, A. J.; Bertagnolli,
M. M. Cancer Res. 2001, 61, 118.
8. (a) Tanaka, S.; Seki, T.; Kitamura, M. Angew. Chem. Int. Ed. 2009,
48, 8948. (b) Tokunou, S.; Nakanishi, W.; Kagawa, N.; Kumamo-
to, T.; Ishikawa, T. Heterocycles 2012, 84, 1045. (c) Uyanik, M.;
Hayashi, H.; Ishihara, K. Nature 2014, 345, 291.
9. For asymmetric iodofunctionalizations, see: (a) Sakakura, A.; Ukai,
A.; Ishihara, K. Nature 2007, 445, 900. (b) Veitch, G. E.; Jacob-
sen, E. N. Angew. Chem. Int. Ed. 2010, 49, 7332. (c) Dobish, M.
C.; Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 6068. (d) Fang,
C.; Paull, D. H.; Hethcox, J. C.; Shugrue, C. R.; Martin, S. F. Org.
Lett. 2012, 14, 6290. (e) Brucks, A. P.; Treitler, D. S.; Liu, S. -A.;
Synder, S. A. Synthesis 2013, 45, 1886. (f) Nakatsuji, H.;
Sawamura, Y.; Sakakura, A.; Ishihara, K. Angew. Chem. Int. Ed.
2014, 53, 6974. (g) Arai, T.; Sugiyama, N.; Masu, H.; Kado, S.;
Yabe, S.; Yamanaka, M. Chem. Comm. 2014, 42, 8287. (h) Mizar,
P.; Burrelli, A.; Gunther, E.; Softje, M.; Farooq, U.; Wirth, T.
Chem. -Eur. J. 2014, 20, 13113. (i) Arai, T.; Watanabe, O.; Yabe,
S.; Yamanaka, M. Angew. Chem. Int. Ed. 2015, 54, 12767.
10.For asymmetric bromofunctionalizations, see: (a) Murai, K.;
Matsushita, T.; Nakamura, A.; Fukushima, A.; Shimura, M.; Fuji-
oka, H. Angew. Chem. Int. Ed. 2010, 49, 9174. (b) Zhou, L.; Chen,
J.; Tan C. K.; Yeung, Y. -Y. J. Am. Chem. Soc. 2011, 133, 9164.
(c) Murai, K.; Nakamura, A.; Matsushita, T.; Shimura, M.; Fujioka,
H. Chem. Eur. J. 2012, 18, 8448. (d) Paull, D. H.; Fang, C.; Don-
ald, J. R.; Pansick, A. D.; Martin, S. F. J. Am. Chem. Soc. 2012,
134, 11128. (e) Wilking, M.; Muck-Lichtenfeld, C.; Daniliuc, C.
G.; Hennecke, U. J. Am. Chem. Soc. 2013, 135, 8133. (f) Xie, W.;
Jiang, G.; Liu, H.; Hu, J.; Pan, X.; Zhang, H.; Wan, X.; Lai, Y.;
Ma, D. Angew. Chem. Int. Ed. 2013, 52, 12924. (g) Ke, Z.; Tan, C.
2. ref. 28
2. DDQ
(95%)
O
O
Bn
H
O
O
15
8j-I
8a-I
I
4
I
i-Pr
AIBN
Bu3SnH
PhSH
LiOH
I
Ph
Ph
N
Ns
N
(88%)
I
(68%)
O
O
16 (90:10 dr)
12f-I
8n-I
17
In conclusion, we have developed an efficient enanti-
oselective iodo- and bromocyclization for the construc-
tion of chiral chromans and pyrrolidines using chiral
amidophosphate catalysts based on the same strategy.
Several natural products and key synthetic intermediates
could be obtained through the easy transformation of
halocyclic products. Experimental results and DFT cal-
culations suggested that the nucleophilicity of the cata-
lysts plays an important role in the enantioselectivity.
Based on the results of NMR studies and control exper-
iments, we proposed a new highly reactive species from
catalyst, I2 and NBS. Apparently, a deeper chiral cavity
around the halonium ion is required to induce high enan-
tioselectivity in bromocyclization compared to iodocy-
clization. Further studies will be needed to fully eluci-
date the reaction mechanism.
ASSOCIATED CONTENT
Supporting Information. Experimental procedures, spec-
troscopic data, and crystallographic data (CIF). This mate-
ACS Paragon Plus Environment