Combining Transition Metal Catalysis with Radical Chemistry:
191–322; d) U. Jahn, Top. Curr. Chem. 2012, 320, 323–
451.
Conclusions
[2] a) G. Manolikakes, P. Knochel, Angew. Chem. 2009,
121, 211–215; Angew. Chem. Int. Ed. 2009, 48, 205–209;
b) For a related Negishi coupling see: M. Kienle, P.
Knochel, Org. Lett. 2010, 12, 2702–2705.
[3] a) D. Kalyani, N. R. Deprez, L. V. Desai, M. S. Sanford,
J. Am. Chem. Soc. 2005, 127, 7330–7331; b) N. R.
Deprez, M. S. Sanford, J. Am. Chem. Soc. 2009, 131,
In summary, this paper describes a photoredox Pd/Ir-
catalyzed C H arylation with diaryliodonium re-
À
agents. The unusually low reaction temperature, the
requirement for light and a photocatalyst, the inhibi-
tory effect of radical scavengers, and the observed
chemoselectivity trends are all consistent with a radi-
cal mechanism for this transformation. This stands in
contrast to the analogous thermal reaction that re-
quires dramatically higher temperature (1008C) and
is believed to proceed via an ꢀionicꢁ 2eÀ pathway. This
example adds to a growing body of work suggesting
that re-routing traditional metal-catalyzed transforma-
tions via radical pathways can offer major advantages
in terms of reaction rates, substrate scope, and func-
tional group tolerance.[1,2,14]
11234–11241.
+
À
[4] Other Pd-catalyzed C H arylations using Ar2I : a) O.
Daugulis, V. Zaitsev, Angew. Chem. 2005, 117, 4114–
4116; Angew. Chem. Int. Ed. 2005, 44, 4046–4048;
b) N. R. Deprez, D. Kalyani, A. Krause, M. S. Sanford,
J. Am. Chem. Soc. 2006, 128, 4972–4973; c) J. Spencer,
B. Z. Chowdhry, A. I. Mallet, R. P. Rathnam, T. Adatia,
A. Bashall, F. Rominger, Tetrahedron 2008, 64, 6082–
6089; d) B. Xiao, Y. Fu, J. Xu, T.-J. Gong, J.-J. Dai, J.
Yi, L. Liu, J. Am. Chem. Soc. 2010, 132, 468–469; e) A.
Wagner, M. S. Sanford, Org. Lett. 2011, 13, 288–291;
f) A. J. Hickman, M. S. Sanford, ACS Catal. 2011, 1,
Experimental Section
170–174.
+
À
[5] For Cu-catalyzed C H arylation reactions with Ar2I
À
Representative Procedure for C H Phenylation of
Substrate 1
see: a) R. J. Phipps, N. P. Grimster, M. J. Gaunt, J. Am.
Chem. Soc. 2008, 130, 8172–8174; b) R. J. Phipps, M. J.
Gaunt, Science 2009, 323, 1593–1597; c) C.-L. Ciana,
R. J. Phipps, J. R. Brandt, F.-M. Meyer, M. J. Gaunt,
Angew. Chem. 2011, 123, 478–482; Angew. Chem. Int.
Ed. 2011, 50, 458–462; d) H. A. Duong, R. E. Gilligan,
M. L. Cooke, R. J. Phipps, M. J. Gaunt, Angew. Chem.
2011, 123, 483–486; Angew. Chem. Int. Ed. 2011, 50,
463–466.
N-Phenylpyrrolidinone 1 (80.6 mg, 0.50 mmol, 1.0 equiv.),
[Ph2I]OTf (430 mg, 1.00 mmol, 2.0 equiv.), Ir
(dtbbpy)PF6 (22.8 mg, 0.025 mmol, 0.05 equiv.), and Pd-
(NO3)2·2H2O (13.3 mg, 0.05 mmol, 0.10 equiv.) were com-
ACHTUNGERTN(NUNG ppy)2
ACHTUNGTRENNUNG
ACHTUNGTRENNUNG
bined in MeOH (2.5 mL) in a 4 mL scintillation vial. The re-
action mixture was cooled in an ice bath (to prevent solvent
evaporation) and sparged with N2 using a submerged needle
for 10 min, and the vial was then immediately sealed with
a Teflon-lined cap. The vial was placed on a stir plate with
two 26 W compact fluorescent lightbulbs (one on either side
of the vial about 5–8 cm away), and the reaction mixture
was allowed to stir at room temperature for 15 h. The reac-
tion mixture was diluted with EtOAc (50 mL) and washed
with 10% aqueous Na2SO3 (2ꢃ25 mL) and brine (1ꢃ
25 mL). The combined aqueous layers were extracted with
EtOAc (3ꢃ10 mL), and the organic layers were then com-
bined, dried over MgSO4, filtered, concentrated, and puri-
fied by column chromatography on silica gel (Rf =0.17 in
20% hexanes/80% Et2O). Product 1a was obtained as a pale
yellow oil; yield: 96.3 mg (81%). 1H and 13C NMR data
matched those reported in the literature.[7b]
À
[6] Arylation of substrates containing activated C H
À
bonds, such as the electron-rich C H bonds in indole,
do not necessarily require forcing conditions (see ref.[4b]
for an example). For one rare instance of room temper-
ature ligand-directed arylation of unactivated aromatic
C H bonds with Ar2I , see ref. However, the latter
transformation requires added TfOH and has not been
demonstrated to be general for any directing groups
beyond phenol esters.
+
[4d]
À
[7] a) W.-Y. Yu, W. Sit, Z. Zhou, A. S. C. Chan, Org. Lett.
2009, 11, 3174–3177; b) D. Kalyani, K. B. McMurtrey,
S. R. Neufeldt, M. S. Sanford, J. Am. Chem. Soc. 2011,
133, 18566–18569.
[8] a) J. Lalevꢄe, N. Blanchard, M.-A. Tehfe, F. Morlet-
Savary, J. P. Fouassier, Macromolecules 2010, 43,
10191–10195; b) J. Lalevꢄe, N. Blanchard, M.-A. Tehfe,
M. Peter, F. Morlet-Savary, J. P. Fouassier, Macromol.
Rapid Commun. 2011, 32, 917–920.
Acknowledgements
[9] Photolysis of Ar2I+ under ultraviolet irradiation (248–
300 nm) in the presence or absence of organic triplet
sensitizers is also known; see: J. L. Dektar, N. P.
Hacker, J. Org. Chem. 1990, 55, 639–647.
This work was supported by the NIH NIGMS (GM073836).
[10] a) D. A. Nagib, M. E. Scott, D. W. C. MacMillan, J.
Am. Chem. Soc. 2009, 131, 10875–10877; b) A. G.
Condie, J. C. Gonzꢅlez-Gꢆmez, C. R. J. Stephenson, J.
Am. Chem. Soc. 2010, 132, 1464–1465.
References
[1] For recent reviews, see a) L. Ford, U. Jahn, Angew.
Chem. 2009, 121, 6504–6507; Angew. Chem. Int. Ed.
2009, 48, 6386–6389; b) U. Jahn, Top. Curr. Chem. 2012,
320, 121–189; c) U. Jahn, Top. Curr. Chem. 2012, 320,
[11] Oxygen can quench photoexcited Ru2+ and Ir3+: J. N.
Demas, E. W. Harris, R. P. M. McBride, J. Am. Chem.
Soc. 1977, 99, 3547–3551.
Adv. Synth. Catal. 2012, 354, 3517 – 3522
ꢂ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3521