A. Sankaraperumal et al. / Polyhedron 50 (2013) 264–269
269
and characterized by elemental analysis, IR, electronic, 1H NMR
spectroscopy. The crystal structure of the free ligand and complex
has been determined by single crystal X-ray diffraction technique.
In the complex, thiosemicarbazone ligand is coordinated to nickel
via (1:2 complex) SNNS mode. In the crystal, molecules are linked
through intermolecular C–Hꢂ ꢂ ꢂCl hydrogen bond network, generate
edge fused ring motif that stabilizes the crystal structure. The metal
complex has shown enhanced synergic effect to control pathogenic
bacteria comparable with standard Streptomycin.
Table 3
Antimicrobial activity using the disc-diffusion method (zone of inhibition in mm).
Organism
CEAB-4-
MTSC
Ni (CEAB-4-
MTSC)2
Streptomycin
Bacteria
Staphylococcus aureus
Micrococcus
Shigella flexneri
Staphylococcus
epidermidis
9
10
9
12
18
18
11
14
26
30
14
8
Proteus vulgaris
Salmonella typhimurium
Salmonella paratyphi-B
Pseudomonas aeruginosa
Bacillus subtilis
Klebsiella pneumonia
Staphylococcus aureus
(MRSA)
Fungi
Candida albicans
Malassesia pachydermatis 10
Trichophyton
11
8
–
–
–
18
18
–
–
–
30
24
18
30
22
20
–
Appendix A. Supplementary material
CCDC 817418 and 840170 contain the supplementary crystallo-
graphic data for ligand and complex, respectively. These data can
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223
336 033; or e-mail: deposit@ccdc.cam.ac.uk.
10
8
17
14
Ketoconazole
8
20
19
–
28
29
30
–
mentagrophytes
Reference
(–) No activity; Streptomycin
standard antifungal agent.
–
standard antibacterial agent; Ketoconazole –
[1] D.G. Bauer (Ed.), International Encyclopedia of Pharmacology, vol. 1, Pergamon
Press, Oxford, 1972, p. 35.
[2] D.R. Williams, Chem. Rev. 72 (1972) 203.
[3] E. Sorkin, W. Roth, H. Erlenmeyer, Helv. Chim. Acta 35 (1952) 1736.
[4] J.C. Cymerman, D. Wills, S.D. Rubbo, J. Edgar, Nature 176 (1955) 34.
[5] S. Padhye, G.B. Kaufman, Coord. Chem. Rev. 63 (1985) 127.
[6] M.J.M. Cambell, Coord. Chem. Rev. 15 (1975) 279.
[7] S.K. Chattopadhyay, M. Hossain, A.K. Guha, S. Ghosh, Transition Met. Chem. 15
(1990) 473.
Table 4
Minimum inhibitory concentration (lg/mL) against the tested bacteria and fungi.
Organism
CEAB-4-
MTSC
Ni (CEAB-4-
MTSC)2
Streptomycin
[8] G.J. Palenik, D.F. Rendle, W.S. Carter, Acta Crystallogr. Sect. B 30 (1974) 2390.
[9] R. Kato, Chem. Rev. 104 (2004) 5319.
[10] N. Robertson, L. Cronin, Coord. Chem. Rev. 227 (2002) 93.
[11] R.C. Elderfield, I.S. Covey, J.B. Geiduschek, W.L. Meyer, A.B. Ross, J.H. Ross,
Potential Anticancer Agents 23 (1958) 1749.
[12] G.M. Sheldrick, Acta Crystallogr. Sect. A A64 (2008) 112.
[13] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[14] A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7.
[15] A.D. Weber, C.S. Sanders, Antimicrob. Agents Chemother. 34 (1990) 156.
[16] V. Duraipandiyan, P. Kanan, S. Ignacimuthu, Leaflets 13 (2009) 320.
[17] L.J. Baucher, J. Inorg. Nucl. Chem. 36 (1974) 531.
[18] J. Uttamachandani, R.N. Kapoor, Transition Met. Chem. 3 (1978) 79.
[19] D. Gattegno, A.M. Giuliani, Tetrahedron 30 (1974) 701.
[20] M.B. Ferrari, S. Capacchi, F. Bisceglie, G. Pelosi, P. Tarasconi, Inorg. Chim. Acta
312 (2001) 81.
[21] N.C. Kasuga, K. Sekino, C. Koumo, N. Shimala, M. Ishikawa, K. Nomiya, J. Inorg.
Biochem. 84 (2001) 55.
[22] Alessia Famengo, Dalice Pinero, Olivier Jeannin, Thierry Guizouarn, Marc
Fourmigue, Dalton Trans. 41 (2012) 1441.
Bacteria
Staphylococcus aureus
Micrococcus
Shigella flexneri
Staphylococcus
epidermidis
Proteus vulgaris
Salmonella paratyphi-B
Salmonella typhimurium
Pseudomonas aeruginosa
Bacillus subtilis
Klebsiella pneumonia
Staphylococcus aureus
(MRSA)
125
250
250
500
100
150
150
300
6.25
6.25
6.25
25
250
500
–
–
–
250
200
–
–
–
6.25
–
30
25
25
6.25
–
250
500
250
250
Fungi
Candida albicans
Malassesia pachydermatis 250
Trichophyton
Fluconazole
>100
12.5
250
250
250
–
–
25
[23] Xing Chen, Wei Qiang Chen, Lin Liang Yu, Jing Hua Lin, Dong Dong Zhou, Wen
Tao Yin, Hong Rong Zuo, Jia Rong Zhou, Le Min Yang, Chun Lin Ni, J. Mol. Struct.
1006 (2011) 419.
[24] Anant Prakash, P.K. Mukesh, K.K. Singh, J. Dev. Biol. Tissue Eng. 3 (2) (2011) 13.
[25] V.M. Leovac, L.S. Jovanovic, V. Divijakovic, A. Pevec, I. Leban, T. Armbruster,
Polyhedron 26 (2007) 49.
mentagrophytes
(–) No activity; Streptomycin and Fluconazole (standard antimicrobial agent).
[26] K.R. Krishnapriya, M. Kandasamy, Polyhedron 24 (2005) 113.
[27] D.X. West, A.E. Liberta, S.B. Pandhye, R.C. Chikate, P.B. Sonawane, A.S.
Kumbhar, R.G. Yerande, Coord. Chem. Rev. 123 (1993) 49.
[28] E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry Principles of Structure
and Reactivity, fourth ed., Harper Collins College Publishers, New York, 1993.
[29] M. Joseph, V. Suni, M.R.P. Kurup, M. Nethaji, A. Kishore, S.G. Bhat, Polyhedron
23 (2004) 3069.
[30] A. Sreekanth, S. Sivakumar, M.R.P. Kurup, J. Mol. Struct. 655 (2003) 47.
[31] E.B. Seena, M.R.P. Kurup, Polyhedron 26 (2007) 829.
[32] A. Sreekanth, H.K. Fun, M.R.P. Kurup, J. Mol. Struct. 737 (2005) 61.
[33] V. Philip, V. Suni, M.R.P. Kurup, M. Nethaji, Polyhedron 23 (2004) 1225.
[34] N. Sampath, Rita Mathews, M.N. Ponnuswamy, Lin-Woo Kang, Mol. Cryst. Liq.
Cryst. 518 (1) (2010) 151.
The results of fungicidal screening show that Ni(II) complex were
highly active than the free ligand against phytopathogenic fungi, C.
albicans, M. pachydermatis, and T. mentagrophytes (Table 4). The
mode of action may involve the formation of a bond through the
azomethane nitrogen atom with the active centres of the cell con-
stituent, resulting in interference with the normal cell process. The
variation in the effectiveness of different compound against differ-
ent organism depends either on the impermeability of the cells of
the microbes or the difference in ribosomes of microbial cells. It
has also been proposed that concentration plays a vital role in
increasing the degree of inhibition, as the concentration increases,
the activity increases. It is noteworthy that the compound is effec-
tive against fungi and bacteria make it interesting for a practical
use as antimicrobial agent.
[35] Yu.-Mei. Hao, Acta Crystallogr. Sect. E 66 (2010) 2528.
[36] S.K. Sengupta, O.P. Pandey, B.K. Srivastava, V.K. Sharma, Transition Met. Chem.
23 (4) (1998) 349.
[37] S.O. Podunavac kuzmanovic, V.M. Leovac, N.U. Perisic janjic, J. Rogan, G. Balas,
J. Serb. Chem. Soc. 64 (1999) 381.
[38] A. Wissner, D.M. Berger, D.H. Boschelli, J. Med. Chem. 43 (17) (2000) 3244.
4. Conclusion
New complex of Ni(II) with p-[N,N-bis(2-chloroethyl)amino]
benzaldehyde-4-methyl hiosemicarbazone have been synthesized