Synthesis and HIV-1 RT inhibitory action 121
virus type
1
(HIV-1) inhibition by
a
series of alpha-
activity using the evoked action potential in the sciatic nerve. Res
Commun in Pharmacol and Toxicol 1996;1:137–148.
28. Lagunin AA, Geronikaki A, Eleftheriou PhT, Hadjipavlou-Litina
DI, Filimonov DA, Poroikov VV. Computer-aided discovery of
potential anti-inflammatory thiazolidinones with dual 5- LOX/
COX inhibition J Med Chem 2008;51:1601–1609
29. He Y, Chen F, Yu X, Wang Y, De Clercq E, Balzarini J et al.
Nonnucleoside HIV-1 reverse transcriptase inhibitors; part 3.
Synthesis and antiviral activity of 5-alkyl-2-[(aryl and alkyloxyl-
anilinophenylacetamide derivatives targeted at HIV-1 reverse
transcriptase. Proc Natl Acad Sci USA 1993;90:1711–1715.
12. Monforte AM, Logoteta P, Ferro S, De Luca L, Iraci N, Maga G
et al. Design, synthesis, and structure-activity relationships of 1,3-
dihydrobenzimidazol-2-one analogues as anti-HIV agents. Bioorg
Med Chem 2009;17:5962–5967.
13. Janssen PA, Lewi PJ, Arnold E, Daeyaert F, de Jonge M, Heeres
J et al. In search of a novel anti-HIV drug: multidisciplinary
coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-
2,6-dimethylphenyl]amino]-2- pyrimidinyl]amino]benzonitrile
(R278474, rilpivirine). J Med Chem 2005;48:1901–1909.
carbonylmethyl)thio]-6-(1-naphthylmethyl)
ones. Bioorg Chem 2004;32:536–548.
pyrimidin-4(3H)-
30. Rawal RK, Tripathi R, Katti SB, Pannecouque C, De Clercq E.
Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-
14. Rawal RK, Tripathi R, Kulkarni S, Paranjape R, Katti SB,
Pannecouque
C
et al. 2-(2,6-Dihalo-phenyl)-3-heteroaryl-2-
1,3-thiazolidin-4-ones as anti-HIV agents. Eur
2008;43:2800–2806.
31. Rawal RK, Tripathi R, Katti SB, Pannecouque C, De Clercq E.
Synthesis and evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,
3-thiazolidin-4-one analogues as anti-HIV-1 agents. Bioorg Med
Chem 2007;15:3134–3142.
32. Chen H, Bai J, Jiao L, Guo Z, Yin Q, Li X. Design, microwave-assisted
synthesis and HIV-RT inhibitory activity of 2-(2,6-dihalophenyl)-
3-(4,6-dimethyl-5-(un)substituted-pyrimidin-2-yl)thiazolidin-4-
ones. Bioorg Med Chem 2009;17:3980–3986.
33. Rawal RK, Tripathi RK, Katti SB, Pannecouque C, De Clercq E.
Synthesis and biological evaluation of 2,3-diaryl substituted-
1,3 thiazolidin-4-ones as anti-HIV agents. J Med Chem 2007: 3:
355–363.
34. Rawal RK, Tripathi RK, Katti SB, Pannecouque C, De Clercq
E. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-
1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg Med Chem
2007:15:1725–1731.
35. Rawal RK, Prabhakar YS, Katti SB, De Clercq E. 2-(Aryl)-3-furan-2-
ylmethyl-thiazolidin-4-ones as selective HIV-RT inhibitors. Bioorg
Med Chem 2005;13:6771–6776.
36. Brewer JC, orp HH, Slagle KM, Brudvig GW, Gray HB.
Electronic structure of trans-dioxorhenium(VI). J Am Chem Soc
1991;113:3171–3173.
37. Rawal RK, Kumar A, Siddiqi MI, Katti SB. Molecular docking
studies on 4-thiazolidinones as HIV-1 RT inhibitors. J Mol Model
2007;13:155–161.
J Med Chem
ylmethyl-1, 3-thiazolidin-4-ones: anti-HIV agents. Chem Biol
Drug Des 2008;72:147–154.
15. Rawal RK, Tripathi R, Katti SB, Pannecouque C, De Clercq
E. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-
1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg Med Chem
2007;15:1725–1731.
16. Ahn M, Yoon K, Min S, Lee JS, Kim JH, Kim TG, et al. Inhibition
of HIV-1 reverse transcriptase and protease by phlorotannins from
the brown alga ecklonia cava. Biol Pharm Bull 2004;27:544–547.
17. Maga G, Hübscher U, Pregnolato M, Ubiali D, Gosselin G,
Spadari S. Potentiation of inhibition of wild-type and mutant
human immunodeficiency virus type 1 reverse transcriptases by
combinations of nonnucleoside inhibitors and d- and L-(beta)-
dideoxynucleoside triphosphate analogs. Antimicrob Agents
Chemother 2001;45:1192–1200.
18. Braz VA, Barkley MD, Jockusch RA, Wintrode PL. Efavirenz binding
site in HIV-1 reverse transcriptase monomers. Biochemistry
2010;49:10565–10573.
19. Ravichandran S, Veerasamy R, Raman S, Krishnan PN, Agrawala
RK. An overview on HIV-1 reverse transcriptase inhibitors. Dig J of
Nanomaterials and Biostructures 2008;3:171–187.
20. Smerdon SJ, Jäger J, Wang J, Kohlstaedt LA, Chirino AJ, Friedman
JM et al. Structure of the binding site for nonnucleoside inhibitors
of the reverse transcriptase of human immunodeficiency virus
type 1. Proc Natl Acad Sci USA 1994;91:3911–3915.
21. PittaE,CrespanE,GeronikakiA,MagaG,SamueleA.Novelthiazolidin
derivatives with an uncommon mechanism of inhibition towards
HIV-1 reverse transcriptase. Lett Drug Des Discov 2010;7:228–234.
22. Das K, Lewi PJ, Hughes SH, Arnold E. Crystallography and
the design of anti-AIDS drugs: conformational flexibility and
positional adaptability are important in the design of non-
nucleoside HIV-1 reverse transcriptase inhibitors. Prog Biophys
Mol Biol 2005;88:209–231.
23. Hsiou Y, Das K, Ding J, Clark AD Jr, Kleim JP, Rösner M et al.
Structures of Tyr188Leu mutant and wild-type HIV-1 reverse
transcriptase complexed with the non-nucleoside inhibitor HBY
097: inhibitor flexibility is a useful design feature for reducing drug
resistance. J Mol Biol 1998;284:313–323.
38. Ren J, Esnouf R, Hopkins A, Ross C, Jones Y, Stammers D et al.
e structure of HIV-1 reverse transcriptase complexed with
9-chloro-TIBO: lessons for inhibitor design. Structure 1995;3:
915–926.
39. Maestro, version 9.0; Schrodinger: New York, 2008.
40. Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and
testing of the OPLS all-atom force field on conformational
energetics and properties of organic liquids. J Am Chem Soc
1996;118:11225–11236.
41. Goodsell DS, Morris GM, Olson AJ. Automated docking of
flexible ligands: applications of AutoDock.
1996;9:1–5.
J Mol Recognit
24. Das K, Clark AD Jr, Lewi PJ, Heeres J, De Jonge MR, Koymans
LM et al. Roles of conformational and positional adaptability
in structure-based design of TMC125-R165335 (etravirine) and
related non-nucleoside reverse transcriptase inhibitors that are
highly potent and effective against wild-type and drug-resistant
HIV-1 variants. J Med Chem 2004;47:2550–2560.
25. Althaus IW, Chou JJ, Gonzales AJ, Deibel MR, Chou KC, Kezdy
FJ et al. Kinetic studies with the non-nucleoside human
immunodeficiency virus type-1 reverse transcriptase inhibitor
U-90152E. Biochem Pharmacol 1994;47:2017–2028.
42. Helma C. Lazy structure-activity relationships (lazar) for the
prediction of rodent carcinogenicity and Salmonella mutagenicity.
Mol Divers 2006;10:147–158.
43. Sarafianos SG, Das K, Ding J, Boyer PL, Hughes SH, Arnold E.
Touching the heart of HIV-1 drug resistance: the fingers close
down on the dNTP at the polymerase active site. Chem Biol
1999;6:R137–R146.
44. Guo Y, Wang XW, Xu Y, Lv X, Wang RP, Liu JY. [Study on evaluation
of human immunodeficiency virus reverse transcriptase inhibitor
by ELISA]. Beijing Da Xue Xue Bao 2007;39:484–488.
26. Souza TM, Rodrigues DQ, Ferreira VF, Marques IP, da Costa Santos
F, Cunha AC et al. Characterization of HIV-1 enzyme reverse
transcriptase inhibition by the compound 6-chloro-1,4-dihydro-4-
oxo-1-(beta-D-ribofuranosyl)quinoline-3-carboxylicacidthrough
kinetic and in silico studies. Curr HIV Res 2009;7:327–335.
27. Mgonzo R, Geronikaki A, eophilidis G. Synthesis of new thiazole
derivatives and comparative study of their local anaesthetic
45. Debyser Z, Vandamme AM, Pauwels R, Baba M, Desmyter
J, De Clercq E. Kinetics of inhibition of endogenous human
immunodeficiency virus type 1 reverse transcription by 2’,3’-
dideoxynucleoside 5’-triphosphate, tetrahydroimidazo-[4,5,1-jk]
[1,4]-benzodiazepin-2(1H)-thion e, and 1-[(2-hydroxyethoxy)
methyl]-6-(phenylthio)thymine derivatives. J Biol Chem 1992;267:
11769–11776.
© 2013 Informa UK, Ltd.